Suppr超能文献

论可压缩性在多孔黏弹性模型中的作用。

On the role of compressibility in poroviscoelastic models.

机构信息

Department of Mathematics, NC State University, SAS Hall 3236, Raleigh, NC 27695, USA.

Department of Electrical Engineering and Computer Science, University of Missouri, 201 Naka Hall, Columbia, MO 65211, USA.

出版信息

Math Biosci Eng. 2019 Jul 3;16(5):6167-6208. doi: 10.3934/mbe.2019308.

Abstract

In this article we conduct an analytical study of a poroviscoelastic mixture model stemming from the classical Biot's consolidation model for poroelastic media, comprising a fluid component and a solid component, coupled with a viscoelastic stress-strain relationship for the total stress tensor. The poroviscoelastic mixture is studied in the one-dimensional case, corresponding to the experimental conditions of confined compression. Upon assuming (i) negligible inertial effects in the balance of linear momentum for the mixture, (ii) a Kelvin-Voigt model for the effective stress tensor and (iii) a constant hydraulic permeability, we obtain an initial value/boundary value problem of pseudo-parabolic type for the spatial displacement of the solid component of the mixture. The dimensionless form of the differential equation is characterized by the presence of two positive parameters γ and η, representing the contributions of compressibility and structural viscoelasticity, respectively. Explicit solutions are obtained for different functional forms characterizing the boundary traction. The main result of our analysis is that the compressibility of the components of a poroviscoelastic mixture does not give rise to unbounded responses to non-smooth traction data. Interestingly, compressibility allows the system to store potential energy as its components are elastically compressed, thereby providing an additional mechanism that limits the maximum of the discharge velocity when the imposed boundary traction is irregular in time.

摘要

在本文中,我们对源自多孔弹性介质经典 Biot 固结模型的多孔粘弹性混合物模型进行了分析研究,该模型由流体成分和固体成分组成,并与总应力张量的粘弹性应力-应变关系相耦合。多孔粘弹性混合物在一维情况下进行研究,对应于受限压缩的实验条件。假设(i)混合物线性动量平衡中可忽略惯性效应,(ii)有效应力张量采用 Kelvin-Voigt 模型,(iii)水力渗透系数恒定,我们得到了混合物固体成分空间位移的初值/边值问题的伪抛物型。微分方程的无量纲形式的特点是存在两个正参数γ和η,分别代表压缩性和结构粘弹性的贡献。对于不同的特征边界力函数形式,我们得到了显式解。我们分析的主要结果是,多孔粘弹性混合物的各成分的压缩性不会导致对非光滑牵引力数据的无界响应。有趣的是,压缩性允许系统在其成分被弹性压缩时存储势能,从而提供了一种额外的机制,当施加的边界牵引力随时间不规则时,限制了排放速度的最大值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验