Long Yu, Zou Zhiyan, Wu Yuanyuan, Feng Huiyi, Chen Ting, Yang Zhi, Jian Xuemin, Yin Yuan, Li Xiaoan
NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China.
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Front Bioeng Biotechnol. 2025 Aug 20;13:1605377. doi: 10.3389/fbioe.2025.1605377. eCollection 2025.
Cerebral ischemic stroke (CIS) is a severe cerebrovascular disease that poses numerous challenges in diagnosis and treatment, primarily attributed to blood-brain barrier (BBB) constraints and inherent drug targeting limitations. Biomimetic membrane nanotechnology, as an emerging therapeutic approach, offers a novel therapeutic strategy by emulating biological membrane structures and functions. This review comprehensively examines biomimetic nanomedicines (BMNPs) in CIS management, encompassing preparation methodologies, material characterization, and specific diagnostic/therapeutic applications. We discussed in detail various types of biomimetic nano-materials such as conventional extracellular membranes, bacterial outer membranes, and virus-like particles, and explore their capacity in enhancing BBB penetration, improving target specificity, and evading immune clearance. Current challenges regarding biosafety profiles, manufacturing quality control, targeted modification precision, and controlled drug release kinetics are delineated in this review. Looking to the future, advancing synergies between nanotechnology and biomedicine hold significant promise for optimizing CIS theranostics and expanding clinical treatment modalities.
脑缺血性中风(CIS)是一种严重的脑血管疾病,在诊断和治疗方面面临诸多挑战,主要归因于血脑屏障(BBB)的限制和固有的药物靶向局限性。仿生膜纳米技术作为一种新兴的治疗方法,通过模仿生物膜的结构和功能提供了一种新的治疗策略。本文综述全面研究了仿生纳米药物(BMNPs)在CIS治疗中的应用,包括制备方法、材料表征以及特定的诊断/治疗应用。我们详细讨论了各种类型的仿生纳米材料,如传统的细胞外膜、细菌外膜和病毒样颗粒,并探讨了它们在增强血脑屏障穿透、提高靶向特异性和逃避免疫清除方面的能力。本文还阐述了目前在生物安全性、生产质量控制、靶向修饰精度和药物控释动力学方面面临的挑战。展望未来,纳米技术与生物医学之间的协同发展有望优化CIS的诊疗,并拓展临床治疗方式。