Hu Bo, Chai Shengnan, Li Xuan, Zhang Qiang, Jin Mei, Zhang Long
Wound Healing Center, Peking University Third Hospital, Beijing, China.
Front Immunol. 2025 Aug 20;16:1612217. doi: 10.3389/fimmu.2025.1612217. eCollection 2025.
Melanoma exhibits profound biological complexity, driven by immune evasion, phenotypic plasticity, and resistance to therapy. While programmed cell death (PCD) shapes tumor-immune interactions, its mechanistic landscape in melanoma remains incompletely defined. This study aims to comprehensively characterize PCD-related signatures and their associations with tumor heterogeneity, prognosis, and immunotherapeutic outcomes.
Single-cell RNA sequencing data from melanoma cohorts (cutaneous and acral subtypes) were used to assess PCD activity via AUCell-based scoring across major cell types. Cell-type-specific analyses examined heterogeneity, metabolic dependencies, and pathway correlations. Intercellular communication was analyzed using CellChat. Bulk RNA sequencing data were then integrated to identify PCD-related gene signatures, and machine learning models (LASSO, Ridge, XGBoost) were applied to develop a prognostic model. Immune infiltration, immunogenomic correlations, and immunotherapy responses were further evaluated using ESTIMATE, CIBERSORT, TMB, IPS, and external ICB-treated cohorts.
Among all cell types, melanoma cells exhibited the highest PCD activation, with disulfidptosis, immunogenic cell death (ICD), and autosis being the most prominent. High PCD activity was linked to advanced clinical stage, lymphatic metastasis, and poor prognosis. Melanoma subpopulations with hyperactivated PCD displayed elevated copy number variation (CNV) burden, enhanced fibroblast/endothelial interactions, and invasive transcriptional profiles. A 15-gene prognostic signature was developed, effectively stratifying survival and immunotherapy response across multiple cohorts. Low-risk tumors demonstrated favorable immune infiltration (CD8 T cells, M1 macrophages), higher tumor mutational burden (TMB), and greater immunogenicity, while high-risk tumors exhibited immune exclusion, cancer-associated fibroblast (CAF) enrichment, and adverse mutations.
This study highlights the functional and clinical significance of PCD heterogeneity in melanoma and provides a validated prognostic model for patient stratification and therapeutic decision-making. These findings underscore the potential of targeting PCD dynamics as a novel approach in melanoma management.
黑色素瘤表现出深刻的生物学复杂性,由免疫逃逸、表型可塑性和对治疗的抗性所驱动。虽然程序性细胞死亡(PCD)塑造肿瘤-免疫相互作用,但其在黑色素瘤中的机制全貌仍未完全明确。本研究旨在全面表征与PCD相关的特征及其与肿瘤异质性、预后和免疫治疗结果的关联。
来自黑色素瘤队列(皮肤和肢端亚型)的单细胞RNA测序数据用于通过基于AUCell的评分评估主要细胞类型中的PCD活性。细胞类型特异性分析检查了异质性、代谢依赖性和通路相关性。使用CellChat分析细胞间通讯。然后整合批量RNA测序数据以鉴定与PCD相关的基因特征,并应用机器学习模型(LASSO、岭回归、XGBoost)开发预后模型。使用ESTIMATE、CIBERSORT、肿瘤突变负荷(TMB)、免疫表型评分(IPS)和外部免疫检查点阻断(ICB)治疗队列进一步评估免疫浸润、免疫基因组相关性和免疫治疗反应。
在所有细胞类型中,黑色素瘤细胞表现出最高的PCD激活,其中二硫化物诱导的细胞死亡、免疫原性细胞死亡(ICD)和自噬最为突出。高PCD活性与晚期临床分期、淋巴转移和不良预后相关。PCD过度激活的黑色素瘤亚群显示出更高的拷贝数变异(CNV)负担、增强的成纤维细胞/内皮细胞相互作用和侵袭性转录谱。开发了一个包含15个基因的预后特征,有效地区分了多个队列中的生存和免疫治疗反应。低风险肿瘤表现出良好的免疫浸润(CD8 T细胞、M1巨噬细胞)、更高的肿瘤突变负担(TMB)和更强的免疫原性,而高风险肿瘤表现出免疫排斥、癌症相关成纤维细胞(CAF)富集和不良突变。
本研究突出了黑色素瘤中PCD异质性的功能和临床意义,并为患者分层和治疗决策提供了一个经过验证的预后模型。这些发现强调了靶向PCD动态作为黑色素瘤管理新方法的潜力。