Suppr超能文献

使用字典学习在动态功能连接性中进行单次扫描、特定受试者成分提取。

Single scan, subject-specific component extraction in dynamic functional connectivity using dictionary learning.

作者信息

Jain Pratik, Sao Anil K, Biswal Bharat

机构信息

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.

Rutgers School of Graduate Studies, Newark, NJ, United States.

出版信息

Imaging Neurosci (Camb). 2025 Sep 2;3. doi: 10.1162/IMAG.a.125. eCollection 2025.

Abstract

The study of individual differences in healthy controls can provide precise descriptions of individual brain activity. Following this direction, researchers have tried to identify a subject using their functional connectivity (FC) patterns computed by functional magnetic resonance imaging (fMRI) data of the brain. Currently, there is an emerging focus on investigating the identifiability over the temporal variability of the FC. Studies have shown that dynamic FC (dFC) can also be used to identify a subject. In this study, we propose a method using the dFC and a dictionary learning (DL) algorithm to extract the subject-specific component using a single fMRI scan. We show that once the dictionary is learned using a training set, it can be stored in memory and reused for other test subjects. Using Human connectome project (HCP) and Nathan Kline Institute (NKI) datasets, we showed that our proposed method can increase the subject identification accuracy significantly from 89.19% to 99.54% using the Schaefer atlas along with subcortical nodes from the HCP atlas. The effect of monozygotic and dizygotic twins on the subject identification was also analyzed, and the results showed no significant differences between the groups having twins and the group having unrelated subjects. This proposed method can aid in the extraction of the subject-specific components of dFC.

摘要

对健康对照个体差异的研究可以提供个体大脑活动的精确描述。沿着这个方向,研究人员试图通过利用大脑功能磁共振成像(fMRI)数据计算出的功能连接(FC)模式来识别个体。目前,人们越来越关注研究FC随时间变化的可识别性。研究表明,动态FC(dFC)也可用于识别个体。在本研究中,我们提出了一种使用dFC和字典学习(DL)算法的方法,通过单次fMRI扫描提取个体特异性成分。我们表明,一旦使用训练集学习了字典,它就可以存储在内存中并重新用于其他测试对象。使用人类连接体项目(HCP)和内森·克莱恩研究所(NKI)数据集,我们表明,我们提出的方法使用Schaefer图谱以及来自HCP图谱的皮质下节点,可以将个体识别准确率从89.19%显著提高到99.54%。还分析了同卵双胞胎和异卵双胞胎对个体识别的影响,结果表明有双胞胎的组和有非亲属个体的组之间没有显著差异。这种提出的方法有助于提取dFC的个体特异性成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242c/12406055/0901f1279015/IMAG.a.125_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验