Shah Monil, Ghosh Ilika, Pishos Luca, Villani Valentina, Pancani Tristano, Yasuda Ryohei, Sun Chao, Kamasawa Naomi, Rangaraju Vidhya
Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
International Max Planck Research School for Synapses and Circuits, Jupiter, FL 33458, USA.
bioRxiv. 2025 Aug 27:2025.08.27.672715. doi: 10.1101/2025.08.27.672715.
The brain is a metabolically demanding organ as it orchestrates and stabilizes neuronal network activity through plasticity. This mechanism imposes enormous and prolonged energetic demands at synapses, yet it is unclear how these needs are met in a sustained manner. Mitochondria serve as a local energy supply for dendritic spines, providing instant and sustained energy during synaptic plasticity. However, it remains unclear whether dendritic mitochondria restructure their energy production unit to meet the sustained energy demands. We developed a correlative light and electron microscopy pipeline with deep-learning-based segmentations and 3D reconstructions to quantify mitochondrial remodeling at 2 nm pixel resolution during homeostatic plasticity. Using light microscopy, we observe global increases in dendritic mitochondrial length, as well as local increases in mitochondrial area near spines. Examining the mitochondria near spines using electron microscopy, we reveal increases in mitochondrial cristae surface area, cristae curvature, endoplasmic reticulum contacts, and ribosomal cluster recruitment, accompanied by increased ATP synthase clustering within mitochondria using single-molecule localization microscopy. Using mitochondria- and spine-targeted ATP reporters, we demonstrate that the local structural remodeling of mitochondria corresponds to increased mitochondrial ATP production and spine ATP levels. These findings suggest that mitochondrial structural remodeling is a key underlying mechanism for meeting the energy requirements of synaptic and network function.
大脑是一个代谢需求很高的器官,因为它通过可塑性来协调和稳定神经网络活动。这种机制在突触处施加了巨大且持久的能量需求,但目前尚不清楚这些需求是如何持续得到满足的。线粒体作为树突棘的局部能量供应源,在突触可塑性过程中提供即时和持续的能量。然而,目前尚不清楚树突线粒体是否会重组其能量产生单元以满足持续的能量需求。我们开发了一种结合光学显微镜和电子显微镜的方法,通过基于深度学习的分割和三维重建,以2纳米像素分辨率量化稳态可塑性过程中的线粒体重塑。利用光学显微镜,我们观察到树突线粒体长度整体增加,以及棘突附近线粒体面积局部增加。通过电子显微镜检查棘突附近的线粒体,我们发现线粒体嵴表面积、嵴曲率、内质网接触和核糖体簇募集增加,同时使用单分子定位显微镜观察到线粒体内ATP合酶簇增加。使用靶向线粒体和棘突的ATP报告基因,我们证明线粒体的局部结构重塑与线粒体ATP产生增加和棘突ATP水平增加相对应。这些发现表明,线粒体结构重塑是满足突触和网络功能能量需求的关键潜在机制。