Pujhari Sujit, Heebner Jessica, Raumann Erich, Zhong Tengfei, Rasgon Jason L, Swulius Matthew T, Shaffer Carrie L, Kaplan Mohammed
bioRxiv. 2025 Aug 29:2025.08.29.673095. doi: 10.1101/2025.08.29.673095.
Hidden within host cells, the endosymbiont is the most prevalent bacterial infection in the animal kingdom. Scientific breakthroughs over the past century yielded fundamental mechanisms by which controls arthropod reproduction to shape dynamic ecological and evolutionary trajectories. However, the structure and spatial organization of symbiont machineries that underpin intracellular colonization and orchestrate maternal inheritance remain unknown. Here, we used cryo-electron tomography to directly image the nanoscale architecture of bacterial tools deployed for host manipulation and germline transmission. We discovered that assembles multiple structures at the host-endosymbiont interface including a filamentous ladder-like framework hypothesized to serve as a specialized motility mechanism that enables bacterial translocation to specific host cell compartments during embryogenesis and somatic tissue dissemination. In addition, we present the first structure of the Rickettsiales homolog type IV secretion system ( T4SS). We provide evidence that the T4SS nanomachine exhibits architectural similarities to the pED208-encoded T4SS apparatus including the biogenesis of rigid conjugative pili extending hundreds of nanometers beyond the bacterial cell surface. Coupled with integrative structural modeling, we demonstrate that in contrast to canonical T4SS architectures, the α-proteobacterial T4SS outer membrane complex assembles a periplasmic baseplate structure predicted to comprise VirB9 oligomers complexed with cognate VirB10 subunits that form extended antennae projections surrounding the translocation channel pore. Collectively, these studies provide an unprecedented view into structural cell biology and unveil the molecular blueprints for architectural paradigms that reinforce ancient host-microbe symbioses.
内共生菌隐藏在宿主细胞内,是动物界最普遍的细菌感染。过去一个世纪的科学突破揭示了其控制节肢动物繁殖以塑造动态生态和进化轨迹的基本机制。然而,支撑细胞内定殖并协调母系遗传的共生菌机制的结构和空间组织仍不清楚。在这里,我们使用冷冻电子断层扫描直接成像用于宿主操纵和种系传播的细菌工具的纳米级结构。我们发现,内共生菌在宿主-内共生菌界面组装了多种结构,包括一个丝状梯子状框架,据推测它作为一种特殊的运动机制,使细菌在胚胎发育和体细胞组织传播过程中能够转移到特定的宿主细胞区室。此外,我们展示了立克次氏体属同源IV型分泌系统(内共生菌T4SS)的首个结构。我们提供的证据表明,内共生菌T4SS纳米机器在结构上与pED208编码的T4SS装置相似,包括延伸到细菌细胞表面数百纳米之外的刚性接合菌毛的生物合成。结合整合结构建模,我们证明,与典型的T4SS结构不同,α-变形菌T4SS外膜复合物组装了一个周质基板结构,预计该结构由与同源VirB10亚基复合的VirB9寡聚体组成,这些亚基形成围绕转运通道孔的延伸触角状突起。总的来说,这些研究为内共生菌的结构细胞生物学提供了前所未有的视角,并揭示了强化古老宿主-微生物共生关系的结构范式的分子蓝图。