Cheng Yuan, Chen Yusi, Kwak Myungji, Kempner Ross P, Singha Rudramani, Winslow Jared, Liu Runqi, Khan Umais, Spangler Tessa, Khan Alvi, Pereira Talmo, Whiteway Matthew, Schaffer Evan S, Rungratsameetaweemana Nuttida, Yang Nan, Wu Herbert Zheng
Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Computational Neuroscience Center, University of Washington, Seattle, WA, USA.
bioRxiv. 2025 Aug 30:2025.08.27.672249. doi: 10.1101/2025.08.27.672249.
Cooperation is a hallmark of social species, enabling individuals to achieve goals that are unattainable alone. Across species, cooperative behaviors are often organized by distinct social roles such as leaders and followers, yet the neural mechanisms supporting such role-based coordination remain elusive. Here we introduce a new paradigm for studying cooperation in mice, where pairs of animals engage in a joint spatial foraging task that naturally gives rise to stable leader-follower roles predictive of learning speed. Disruption of medial prefrontal cortex (mPFC) activity, particularly in followers, impairs cooperation and induces reciprocal shifts in how animals weigh self- and partner-related cues for decision-making. Calcium imaging reveals that mPFC encodes both leadership dynamics and an egocentric social value map of the partner's position, each in an asymmetric, role-specific manner. Combining this behavior with a novel multi-agent inverse reinforcement learning framework, we identify latent value functions that guide cooperative decisions and are decodable from mPFC activity. These findings uncover fundamental neural computations that support cooperation, revealing how social roles shape decision-making in real time. Our work opens new avenues for investigating the cellular and circuit basis of social cognition and collective behavior.
合作是群居物种的一个标志,它使个体能够实现独自无法达成的目标。在不同物种中,合作行为通常由不同的社会角色组织,比如领导者和跟随者,但支持这种基于角色的协调的神经机制仍然难以捉摸。在这里,我们引入了一种研究小鼠合作的新范式,即让成对的动物参与一项联合空间觅食任务,这项任务自然会产生可预测学习速度的稳定的领导者-跟随者角色。内侧前额叶皮层(mPFC)活动的破坏,尤其是在跟随者中,会损害合作,并导致动物在权衡自我和伙伴相关线索以进行决策时出现相互转变。钙成像显示,mPFC以不对称的、特定角色的方式编码领导动态和伙伴位置的自我中心社会价值地图。将这种行为与一种新颖的多智能体逆强化学习框架相结合,我们识别出指导合作决策且可从mPFC活动中解码的潜在价值函数。这些发现揭示了支持合作的基本神经计算,揭示了社会角色如何实时塑造决策。我们的工作为研究社会认知和集体行为的细胞和神经回路基础开辟了新途径。