Suppr超能文献

超分辨率成像揭示了桥粒中桥粒斑蛋白的拉伸诱导结构重排。

Super-Resolution Imaging Reveals Stretch-Induced Architectural Rearrangement of Desmoplakin in Desmosomes.

作者信息

Seeley Leslie D, Ainslie Collin M, Sewell-Loftin Mary Kathryn, Mattheyses Alexa L

机构信息

Department of Cell, Developmental, and Integrative Biology, University of Alabama Heersink School of Medicine, Birmingham, AL, 35294 United States.

Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294 United States.

出版信息

bioRxiv. 2025 Aug 27:2025.08.26.672431. doi: 10.1101/2025.08.26.672431.

Abstract

Desmosomes (DSMs) are intercellular junctions essential for providing mechanical resilience to tissues, particularly the epidermis. Desmoplakin (DP) is a key DSM protein which anchors plaque proteins to keratins, thereby ensuring tissue integrity under mechanical stress. Clinically, DP mutations impair keratinocyte adhesion and structural integrity, leading to skin fragility disorders. However, how mechanical forces influence DSM architecture is poorly understood. We hypothesized that physiological stretch could alter DP architecture in DSMs. To test this, we subjected normal human epidermal keratinocytes (NHEKs) and DP-knockout human keratinocytes expressing either DPI-mEGFP, DP1a-mEGFP, or DP2-mEGFP to mechanical stretch using the Flexcell system (13% uniaxial strain for 30 minutes). Direct stochastic optical reconstruction microscopy (dSTORM) was used to visualize DP architecture with 20 nm resolution. We found mechanical stretch significantly increased the distance between DP cytoplasmic tails compared to static controls across all cell lines. In contrast, there was no significant change in the N-terminal head domain under stretch, highlighting the tail domain as the primary site of mechanical adaptation. This work enhances our understanding of how DSMs and DP isoforms respond to biomechanical forces, revealing that the C-term of DP undergoes a strain-induced conformational shift, reorganizing the DSM architecture in response to physiological stress. Ultimately, elucidating the spatial and biomechanical behavior of DP will deepen our understanding of its contribution to dermatological health and disease.

摘要

桥粒(DSMs)是细胞间连接结构,对于为组织,尤其是表皮提供机械弹性至关重要。桥粒斑蛋白(DP)是一种关键的桥粒蛋白,它将斑块蛋白锚定到角蛋白上,从而确保在机械应力下组织的完整性。在临床上,DP突变会损害角质形成细胞的黏附及结构完整性,导致皮肤脆性疾病。然而,机械力如何影响桥粒结构尚不清楚。我们推测生理拉伸可能会改变桥粒中DP的结构。为了验证这一点,我们使用Flexcell系统对表达DPI-mEGFP、DP1a-mEGFP或DP2-mEGFP的正常人表皮角质形成细胞(NHEKs)和DP基因敲除的人角质形成细胞施加机械拉伸(13%单轴应变,持续30分钟)。利用直接随机光学重建显微镜(dSTORM)以20纳米的分辨率观察DP的结构。我们发现,与所有细胞系的静态对照相比,机械拉伸显著增加了DP细胞质尾部之间的距离。相比之下,拉伸状态下N端头部结构域没有显著变化,这突出了尾部结构域是机械适应的主要部位。这项工作增进了我们对桥粒和DP亚型如何响应生物力学力的理解,揭示了DP的C端会发生应变诱导的构象变化,从而在生理应激下重组桥粒结构。最终,阐明DP的空间和生物力学行为将加深我们对其在皮肤健康和疾病中所起作用的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38f9/12407982/7156a467035f/nihpp-2025.08.26.672431v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验