Robertson Kevin C, Amann Sascha J, Liu Tongkun, Funk Adam V, Wang Xianxi, Grishkovskaya Irina, Tabor John R, Norris-Drouin Jacqueline L, Arrowsmith Cheryl H, Collins Jon L, Emanuele Michael J, Haselbach David, James Lindsey I, Brown Nicholas G
Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
bioRxiv. 2025 Aug 30:2025.08.29.673087. doi: 10.1101/2025.08.29.673087.
Targeted protein degradation (TPD) through the ubiquitin-proteasome system is driven by compound-mediated polyubiquitination of a protein-of-interest by an E3 ubiquitin (Ub) ligase. To date, relatively few E3s have been successfully utilized for TPD and the governing principles of functional ternary complex formation between the E3, degrader, and protein target remain elusive. FBXO22 has recently been harnessed by several groups to target different proteins for degradation. FBXO22 recruitment has been enabled through degraders that covalently modify its cysteine residues. Here, we reveal that the aldehyde derivative of UNC10088 promotes cooperative binding of FBXO22 to NSD2, a histone methyltransferase and oncogenic protein, leading to a cryo-EM structure of the full SKP1-CUL1-F-box (SCF)-FBXO22 complex with NSD2. This structure revealed a conformational change in the FBXO22 loop surrounding C326, further exposing the cysteine for covalent recruitment. Additional medicinal chemistry efforts led to the discovery of benzaldehyde-based non-prodrug degraders that similarly engage C326 of FBXO22 and potently degrade NSD2. Furthermore, unlike many degraders, our molecules recruit NSD2 to a different surface of FBXO22 than the known FBXO22 substrate BACH1, allowing for concurrent complex formation and degradation of both the neosubstrate and endogenous substrates. Overall, we demonstrate the biochemical and structural basis for NSD2 degradation, revealing key principles for efficient and selective TPD by SCF.
通过泛素-蛋白酶体系统进行的靶向蛋白质降解(TPD)是由化合物介导的、E3泛素(Ub)连接酶对目标蛋白质进行多聚泛素化驱动的。迄今为止,相对较少的E3连接酶已成功用于TPD,E3连接酶、降解剂和蛋白质靶点之间功能性三元复合物形成的主导原则仍然难以捉摸。最近,几个研究小组利用FBXO22来靶向不同的蛋白质进行降解。通过共价修饰其半胱氨酸残基的降解剂实现了FBXO22的募集。在这里,我们揭示了UNC10088的醛衍生物促进FBXO22与NSD2(一种组蛋白甲基转移酶和致癌蛋白)的协同结合,从而得到了与NSD2形成的完整SKP1-CUL1-F盒(SCF)-FBXO22复合物的冷冻电镜结构。该结构揭示了围绕C326的FBXO22环的构象变化,进一步暴露了用于共价募集的半胱氨酸。额外的药物化学研究发现了基于苯甲醛的非前体降解剂,它们同样与FBXO22的C326结合并有效降解NSD2。此外,与许多降解剂不同,我们的分子将NSD2募集到FBXO22的一个与已知FBXO22底物BACH1不同的表面,从而允许新底物和内源性底物同时形成复合物并被降解。总体而言,我们证明了NSD2降解的生化和结构基础,揭示了SCF进行高效和选择性TPD的关键原则。