Muhar Matthias F, Farnung Jakob, Cernakova Martina, Hofmann Raphael, Henneberg Lukas T, Pfleiderer Moritz M, Denoth-Lippuner Annina, Kalčic Filip, Nievergelt Ajse S, Peters Al-Bayati Marwa, Sidiropoulos Nikolaos D, Beier Viola, Mann Matthias, Jessberger Sebastian, Jinek Martin, Schulman Brenda A, Bode Jeffrey W, Corn Jacob E
Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
Nature. 2025 Feb;638(8050):519-527. doi: 10.1038/s41586-024-08475-w. Epub 2025 Jan 29.
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites. Such modifications have been proposed to trigger the selective removal of chemically marked proteins; however, identifying modifications that are sufficient to induce protein degradation has remained challenging. Here, using a semi-synthetic chemical biology approach coupled to cellular assays, we found that C-terminal amide-bearing proteins (CTAPs) are rapidly cleared from human cells. A CRISPR screen identified FBXO31 as a reader of C-terminal amides. FBXO31 is a substrate receptor for the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase SCF-FBXO31, which ubiquitylates CTAPs for subsequent proteasomal degradation. A conserved binding pocket enables FBXO31 to bind to almost any C-terminal peptide bearing an amide while retaining exquisite selectivity over non-modified clients. This mechanism facilitates binding and turnover of endogenous CTAPs that are formed after oxidative stress. A dominant human mutation found in neurodevelopmental disorders reverses CTAP recognition, such that non-amidated neosubstrates are now degraded and FBXO31 becomes markedly toxic. We propose that CTAPs may represent the vanguard of a largely unexplored class of modified amino acid degrons that could provide a general strategy for selective yet broad surveillance of chemically damaged proteins.
在正常细胞稳态过程中,未折叠和定位错误的蛋白质会被识别并清除,以防止有毒副产物的积累。当蛋白质稳态在衰老、神经退行性变或细胞应激过程中受到干扰时,蛋白质会通过反应性代谢产物积累多种形式的化学损伤。有人提出,这种修饰会触发对化学标记蛋白质的选择性清除;然而,确定足以诱导蛋白质降解的修饰仍然具有挑战性。在这里,我们使用一种半合成化学生物学方法结合细胞分析,发现带有C端酰胺的蛋白质(CTAPs)能从人类细胞中快速清除。一项CRISPR筛选确定FBXO31是C端酰胺的识别蛋白。FBXO31是SKP1-CUL1-F盒蛋白(SCF)泛素连接酶SCF-FBXO31的底物受体,它使CTAPs泛素化,随后进行蛋白酶体降解。一个保守的结合口袋使FBXO31能够结合几乎任何带有酰胺的C端肽,同时对未修饰的底物保持高度选择性。这种机制促进了氧化应激后形成的内源性CTAPs的结合和周转。在神经发育障碍中发现的一种主要的人类突变会逆转CTAP的识别,使得非酰胺化的新底物现在被降解,而FBXO31变得具有明显的毒性。我们提出,CTAPs可能代表了一类很大程度上未被探索的修饰氨基酸降解子的先锋,它们可以为选择性但广泛地监测化学损伤的蛋白质提供一种通用策略。