Zanin Andrea, Pagani Stefano, Corti Mattia, Crepaldi Valeria, Di Fede Giuseppe, Antonietti Paola F
IoTique, V.le Trento 37D, Rovereto, 38062, TN, Italy.
MOX, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, MI, Italy.
bioRxiv. 2025 Aug 27:2025.08.26.672412. doi: 10.1101/2025.08.26.672412.
Alzheimer's disease shows significantly variable progressions between patients, making early diagnosis, disease monitoring, and care planning difficult. Existing data-driven Disease Progression Models try to tackle this issue, but they usually require sufficiently large datasets of specific diagnostic modalities, which are rarely available in clinical practice. Here, we introduce a new modeling framework capable of predicting individual disease trajectories from sparse, irregularly sampled, multi-modal clinical data. Our method uses (recurrent) Neural Ordinary Differential Equations to determine the current hidden state of a patient from sparse past exams and to forecast future disease progression, illustrating how biomarkers evolve over time. When applied to the ADNI clinical cohort, the model detected early signs of disease more accurately than common data-driven alternatives and effectively tracked changes in biomarker trajectories that align with established clinical knowledge. This provides a versatile tool for accurate diagnosis and monitoring of neurodegenerative diseases.
阿尔茨海默病在患者之间表现出显著不同的进展情况,这使得早期诊断、疾病监测和护理规划变得困难。现有的数据驱动疾病进展模型试图解决这个问题,但它们通常需要足够大的特定诊断方式数据集,而这些数据集在临床实践中很少能获得。在此,我们引入了一个新的建模框架,该框架能够从稀疏、不规则采样的多模态临床数据中预测个体疾病轨迹。我们的方法使用(循环)神经常微分方程,根据过去稀疏的检查结果确定患者当前的隐藏状态,并预测未来的疾病进展,展示生物标志物如何随时间演变。当应用于阿尔茨海默病神经影像学计划(ADNI)临床队列时,该模型比常见的数据驱动替代方法更准确地检测到疾病的早期迹象,并有效地跟踪了与既定临床知识相符的生物标志物轨迹变化。这为准确诊断和监测神经退行性疾病提供了一个通用工具。