Suppr超能文献

一种用于阿尔茨海默病诊断的跨模态互知识蒸馏框架:解决模态不完整问题。

A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities.

作者信息

Kwak Min Gu, Mao Lingchao, Zheng Zhiyang, Su Yi, Lure Fleming, Li Jing

机构信息

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Banner Alzheimer's Institute, Phoenix, AZ 85006, USA.

出版信息

medRxiv. 2024 Oct 22:2023.08.24.23294574. doi: 10.1101/2023.08.24.23294574.

Abstract

UNLABELLED

Early detection of Alzheimer's Disease (AD) is crucial for timely interventions and optimizing treatment outcomes. Despite the promise of integrating multimodal neuroimages such as MRI and PET, handling datasets with incomplete modalities remains under-researched. This phenomenon, however, is common in real-world scenarios as not every patient has all modalities due to practical constraints such as cost, access, and safety concerns. We propose a deep learning framework employing cross-modal Mutual Knowledge Distillation (MKD) to model different sub-cohorts of patients based on their available modalities. In MKD, the multimodal model (e.g., MRI and PET) serves as a teacher, while the single-modality model (e.g., MRI only) is the student. Our MKD framework features three components: a Modality-Disentangling Teacher (MDT) model designed through information disentanglement, a student model that learns from classification errors and MDT's knowledge, and the teacher model enhanced via distilling the student's single-modal feature extraction capabilities. Moreover, we show the effectiveness of the proposed method through theoretical analysis and validate its performance with simulation studies. In addition, our method is demonstrated through a case study with Alzheimer's Disease Neuroimaging Initiative (ADNI) datasets, underscoring the potential of artificial intelligence in addressing incomplete multimodal neuroimaging datasets and advancing early AD detection.

NOTE TO PRACTITIONERS—: This paper was motivated by the challenge of early AD diagnosis, particularly in scenarios when clinicians encounter varied availability of patient imaging data, such as MRI and PET scans, often constrained by cost or accessibility issues. We propose an incomplete multimodal learning framework that produces tailored models for patients with only MRI and patients with both MRI and PET. This approach improves the accuracy and effectiveness of early AD diagnosis, especially when imaging resources are limited, via bi-directional knowledge transfer. We introduced a teacher model that prioritizes extracting common information between different modalities, significantly enhancing the student model's learning process. This paper includes theoretical analysis, simulation study, and real-world case study to illustrate the method's promising potential in early AD detection. However, practitioners should be mindful of the complexities involved in model tuning. Future work will focus on improving model interpretability and expanding its application. This includes developing methods to discover the key brain regions for predictions, enhancing clinical trust, and extending the framework to incorporate a broader range of imaging modalities, demographic information, and clinical data. These advancements aim to provide a more comprehensive view of patient health and improve diagnostic accuracy across various neurodegenerative diseases.

摘要

未标注

早期发现阿尔茨海默病(AD)对于及时干预和优化治疗效果至关重要。尽管整合MRI和PET等多模态神经影像具有前景,但处理模态不完整的数据集仍未得到充分研究。然而,这种现象在现实场景中很常见,因为由于成本、获取途径和安全问题等实际限制,并非每个患者都具备所有模态。我们提出了一种深度学习框架,采用跨模态互知识蒸馏(MKD),根据患者可用的模态对不同子群体进行建模。在MKD中,多模态模型(如MRI和PET)充当教师,而单模态模型(如仅MRI)是学生。我们的MKD框架具有三个组件:通过信息解缠设计的模态解缠教师(MDT)模型、从分类错误和MDT的知识中学习的学生模型,以及通过提炼学生的单模态特征提取能力而增强的教师模型。此外,我们通过理论分析展示了所提方法的有效性,并通过模拟研究验证了其性能。此外,我们通过阿尔茨海默病神经影像倡议(ADNI)数据集的案例研究展示了我们的方法,强调了人工智能在处理不完整的多模态神经影像数据集和推进AD早期检测方面的潜力。

给从业者的提示

本文的动机是早期AD诊断的挑战,特别是在临床医生遇到患者影像数据可用性各异的场景中,例如MRI和PET扫描,这些通常受到成本或可及性问题的限制。我们提出了一个不完整的多模态学习框架,为仅拥有MRI数据的患者和同时拥有MRI和PET数据的患者生成定制模型。这种方法通过双向知识转移提高了早期AD诊断的准确性和有效性,特别是在影像资源有限时。我们引入了一个教师模型,该模型优先提取不同模态之间的共同信息,显著增强了学生模型的学习过程。本文包括理论分析、模拟研究和实际案例研究,以说明该方法在早期AD检测中的潜在前景。然而,从业者应注意模型调优中涉及的复杂性。未来的工作将专注于提高模型的可解释性并扩大其应用范围。这包括开发发现预测关键脑区的方法、增强临床信任,以及扩展框架以纳入更广泛的影像模态、人口统计学信息和临床数据。这些进展旨在提供更全面的患者健康视图,并提高各种神经退行性疾病的诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验