Suppr超能文献

使用7T场强下的血氧水平依赖性功能磁共振成像(BOLD-fMRI)和脑血容量功能磁共振成像(CBV-fMRI)对跨皮质深度的柱状水平组织进行解码。

Decoding of columnar-level organization across cortical depth using BOLD- and CBV-fMRI at 7 T.

作者信息

Haenelt Daniel, Chaimow Denis, Schmidt Marianna Elisa, Nasr Shahin, Weiskopf Nikolaus, Trampel Robert

机构信息

Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.

International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, 04103 Leipzig, Germany.

出版信息

bioRxiv. 2025 Aug 27:2023.09.28.560016. doi: 10.1101/2023.09.28.560016.

Abstract

Multivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques. Since fMRI is based on measuring the hemodynamic response following neural activation, the spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular compartments that drain the signal from the actual location of neural activation, making it challenging to image cortical structures at the spatial scale of cortical columns and layers. By relying on information from multiple voxels, MVPA has shown promising results in retrieving information encoded in fine-grained spatial patterns. We examined the spatial specificity of the signal exploited by MVPA. Over multiple sessions, we measured ocular dominance columns (ODCs) in human primary visual cortex (V1) with different acquisition techniques at 7 T. For measurements with blood oxygenation level dependent (BOLD) contrast, we included both gradient echo- (GE-BOLD) and spin echo-based (SE-BOLD) sequences. Furthermore, we acquired data using the vascular-space-occupancy (VASO) fMRI technique, which is sensitive to cerebral blood volume (CBV) changes. We used the data to decode eye-of-origin from signals across cortical layers. While ocularity information can be decoded with all imaging techniques, laminar profiles reveal that macrovascular contributions affect all acquisition methods, limiting their specificity across cortical depth. Therefore, although MVPA is a promising approach for investigating the mesoscopic circuitry of the human cerebral cortex, careful consideration of macrovascular contributions is needed that render the spatial specificity of the extracted signal.

摘要

多变量模式分析(MVPA)方法是一种从功能磁共振成像(fMRI)技术获取的神经生理数据中检索信息的通用工具。由于fMRI基于测量神经激活后的血液动力学反应,fMRI信号的空间特异性本质上受到大血管腔室贡献的限制,这些腔室从神经激活的实际位置引流信号,使得在皮质柱和层的空间尺度上对皮质结构进行成像具有挑战性。通过依赖多个体素的信息,MVPA在检索以细粒度空间模式编码的信息方面已显示出有前景的结果。我们研究了MVPA所利用信号的空间特异性。在多个实验环节中,我们在7T场强下使用不同的采集技术测量了人类初级视觉皮层(V1)中的眼优势柱(ODC)。对于采用血氧水平依赖(BOLD)对比的测量,我们纳入了梯度回波(GE-BOLD)和基于自旋回波(SE-BOLD)的序列。此外,我们使用血管空间占据(VASO)fMRI技术采集数据,该技术对脑血容量(CBV)变化敏感。我们使用这些数据从跨皮质层的信号中解码眼的来源。虽然所有成像技术都能解码眼性信息,但层流分布表明大血管的贡献影响所有采集方法,限制了它们在皮质深度上的特异性。因此,尽管MVPA是研究人类大脑皮质介观电路的一种有前景的方法,但需要仔细考虑大血管的贡献,因为这会影响提取信号的空间特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d1b/12407697/9c66496e96e7/nihpp-2023.09.28.560016v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验