Roefs Emiel C A, Schellekens Wouter, Báez-Yáñez Mario G, Bhogal Alex A, Groen Iris I A, van Osch Matthias J P, Siero Jeroen C W, Petridou Natalia
Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, Utrecht, Netherlands.
C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.
Imaging Neurosci (Camb). 2024 Jun 28;2:1-19. doi: 10.1162/imag_a_00203. eCollection 2024 Jun 1.
Assessment of neuronal activity using blood oxygenation level-dependent (BOLD) is confounded by how the cerebrovascular architecture modulates hemodynamic responses. To understand brain function at the laminar level, it is crucial to distinguish neuronal signal contributions from those determined by the cortical vascular organization. Therefore, our aim was to investigate the purely vascular contribution in the BOLD signal by using vasoactive stimuli and compare that with neuronal-induced BOLD responses from a visual task. To do so, we estimated the hemodynamic response function (HRF) across cortical depth following brief visual stimulations under different conditions using ultrahigh-field (7 Tesla) functional (f)MRI. We acquired gradient-echo (GE)-echo-planar-imaging (EPI) BOLD, containing contributions from all vessel sizes, and spin-echo (SE)-EPI BOLD for which signal changes predominately originate from microvessels, to distinguish signal weighting from different vascular compartments. Non-neuronal hemodynamic changes were induced by hypercapnia and hyperoxia to estimate cerebrovascular reactivity and venous cerebral blood volume ( ). Results show that increases in GE HRF amplitude from deeper to superficial layers coincided with increased macrovascular . -normalized GE-HRF amplitudes yielded similar cortical depth profiles as SE, thereby possibly improving specificity to neuronal activation. For GE BOLD, faster onset time and shorter time-to-peak were observed toward the deeper layers. Hypercapnia reduced the amplitude of visual stimulus-induced signal responses as denoted by lower GE-HRF amplitudes and longer time-to-peak. In contrast, the SE-HRF amplitude was unaffected by hypercapnia, suggesting that these responses reflect predominantly neurovascular processes that are less contaminated by macrovascular signal contributions.
使用血氧水平依赖(BOLD)来评估神经元活动会受到脑血管结构调节血流动力学反应方式的干扰。为了在层状水平上理解脑功能,区分神经元信号贡献与由皮质血管组织决定的信号贡献至关重要。因此,我们的目的是通过使用血管活性刺激来研究BOLD信号中纯粹的血管贡献,并将其与视觉任务中神经元诱导的BOLD反应进行比较。为此,我们使用超高场(7特斯拉)功能磁共振成像(fMRI)在不同条件下短暂视觉刺激后,估计了整个皮质深度的血流动力学反应函数(HRF)。我们采集了包含所有血管大小贡献的梯度回波(GE)-回波平面成像(EPI)BOLD,以及信号变化主要源自微血管的自旋回波(SE)-EPI BOLD,以区分来自不同血管腔室的信号权重。通过高碳酸血症和高氧诱导非神经元血流动力学变化,以估计脑血管反应性和静脉脑血容量( )。结果表明,从深层到浅层GE HRF幅度的增加与大血管 的增加相一致。 -标准化的GE-HRF幅度产生了与SE相似的皮质深度分布,从而可能提高对神经元激活的特异性。对于GE BOLD,在较深层观察到更快的起始时间和更短的峰值时间。高碳酸血症降低了视觉刺激诱导的信号反应幅度,表现为较低的GE-HRF幅度和更长的峰值时间。相比之下,SE-HRF幅度不受高碳酸血症影响,这表明这些反应主要反映神经血管过程,受大血管信号贡献的污染较少。