Mohsin Md, Cantiello Horacio, Del Rocío Cantero María, Marucho Marcelo
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas, USA.
IMSaTeD, Instituto Multidisciplinario de Salud, Tecnología, y Desarrollo, CONICET-UNSE, Santiago del Estero, Argentina.
bioRxiv. 2025 Aug 29:2025.08.25.672199. doi: 10.1101/2025.08.25.672199.
Environmental perturbations and local changes in cellular electric potential can stimulate cytoskeletal filaments to transmit ionic currents along their surface. Advanced models and accurate experiments may provide a molecular understanding of these processes and reveal their role in cell electrical activities. This article introduces a multi-scale electrokinetic model incorporating atomistic protein details and biological environments to characterize electrical impulses along microtubules. We consider that condensed ionic layers on microtubule surfaces form two coupled asymmetric nonlinear electrical transmission lines. The model accounts for tubulin-tubulin interactions, dissipation, and a nanopore coupling between inner and outer surfaces, enabling luminal currents, energy transfer, amplification, and oscillatory dynamics that resemble the experimentally observed transistor properties of microtubules. The approach has been used to analyze how different electrolyte conditions and voltage stimuli affect electrical impulses' shape, attenuation, oscillation, and propagation velocity along microtubules. Integrating transistor-like properties in the microtubules model has profound implications for intracellular communication and bioelectronic applications.
环境扰动和细胞电势的局部变化可刺激细胞骨架丝沿其表面传导离子电流。先进的模型和精确的实验可能会提供对这些过程的分子理解,并揭示它们在细胞电活动中的作用。本文介绍了一种多尺度电动模型,该模型纳入了原子级蛋白质细节和生物环境,以表征沿微管的电脉冲。我们认为微管表面的凝聚离子层形成了两条耦合的不对称非线性电传输线。该模型考虑了微管蛋白-微管蛋白相互作用、耗散以及内外表面之间的纳米孔耦合,实现了管腔电流、能量转移、放大以及类似于实验观察到的微管晶体管特性的振荡动力学。该方法已被用于分析不同的电解质条件和电压刺激如何影响沿微管的电脉冲的形状、衰减、振荡和传播速度。将类似晶体管的特性整合到微管模型中对细胞内通信和生物电子应用具有深远意义。