Kim Woochan, Wozniak Aaron K, Burkard Nathaniel J, Freaney Michael L, Costamagna-Soto Ailen, O'Conor Kelly, Bakhoda Abolgasem, Eisenberg Seth M, Zhao Wenjing, Liow Jeih-San, Volkow Nora D, Kim Sung Won
National Institute on Alcohol Abuse and Alcoholism.
National Institute of Mental Health.
Res Sq. 2025 Aug 27:rs.3.rs-7367969. doi: 10.21203/rs.3.rs-7367969/v1.
Fentanyl is a potent synthetic opioid widely used for pain management and anesthesia, but the high prevalence of its misuse and its key contribution to overdose fatalities in the United States have made it a major drug of concern. Although fentanyl's onset, duration, and toxicity depend on its pharmacokinetics and specific tissue distribution, most studies have focused primarily on plasma concentrations, leaving its distribution in critical tissues largely unexplored (this knowledge gap limits our understanding of fentanyl's clinical effects, tissue accumulation, and the factors influencing its efficacy and safety). Here, we report the radiosynthesis of [C]fentanyl for PET imaging and present a preliminary whole-body pharmacokinetic study in rodents.
[C]Fentanyl was synthesized in 42 mins in a high radiochemical yield (10.4 ± 5.7%, n = 5), radiochemical purity (> 99%), and molar activity (up to 2571.5 GBq/μmol at EOB). ,-diisopropylethylamine in chloroform was optimal for amidation. PET imaging in rats revealed rapid brain uptake (SUV 2.71 ± 1.04 g/mL) and fast washout (T = 5.06 min), both significantly increased by efflux transporter inhibition or knockout. Peripherally, high and prolonged uptake in adipose tissues was observed (SUV = 1.73 ± 0.313 g/mL, T = 177 min), with > 60% of C-11 remaining as unchanged [C]fentanyl at 60 min.
We successfully developed and automated the radiosynthesis of [C]fentanyl, enabling PET imaging that revealed rapid brain kinetics and a critical role of P-gp/BCRP efflux in fentanyl disposition in brain. Prolonged retention in adipose tissue may delay brain clearance, potentially increasing the risk of renarcotization (as has been reported in clinical cases after naloxone reversal). These findings advance our ability to quantify fentanyl tissue distribution and pharmacokinetics in the brain and body and provide a valuable tool for further studies in preclinical and clinical settings.
芬太尼是一种强效合成阿片类药物,广泛用于疼痛管理和麻醉,但在美国,其滥用的高发生率及其对过量致死的关键作用使其成为一个主要关注的药物。尽管芬太尼的起效、持续时间和毒性取决于其药代动力学和特定的组织分布,但大多数研究主要集中在血浆浓度上,其在关键组织中的分布在很大程度上未被探索(这一知识空白限制了我们对芬太尼临床效果、组织蓄积以及影响其疗效和安全性因素的理解)。在此,我们报告了用于正电子发射断层扫描(PET)成像的[¹¹C]芬太尼的放射性合成,并展示了在啮齿动物中的初步全身药代动力学研究。
[¹¹C]芬太尼在42分钟内合成,具有高放射化学产率(10.4±5.7%,n = 5)、放射化学纯度(>99%)和摩尔活度(EOB时高达2571.5 GBq/μmol)。氯仿中的N,N-二异丙基乙胺对酰胺化反应最为适宜。大鼠的PET成像显示脑部摄取迅速(SUV为2.71±1.04 g/mL)且清除迅速(T₁/₂ = 5.06分钟),通过抑制或敲除外排转运体二者均显著增加。在周围组织中,观察到脂肪组织摄取高且持续时间长(SUV = 1.73±0.313 g/mL,T₁/₂ = 177分钟),在60分钟时超过60%的¹¹C仍以未变化的[¹¹C]芬太尼形式存在。
我们成功开发并实现了[¹¹C]芬太尼放射性合成的自动化,使得PET成像能够揭示脑部快速的动力学以及P-糖蛋白/乳腺癌耐药蛋白(P-gp/BCRP)外排在芬太尼脑内处置中的关键作用。在脂肪组织中的长时间滞留可能会延迟脑部清除,潜在地增加再次麻醉的风险(正如纳洛酮逆转后临床病例中所报道的那样)。这些发现提升了我们量化芬太尼在脑和体内组织分布及药代动力学的能力,并为临床前和临床环境中的进一步研究提供了一个有价值的工具。