Suppr超能文献

嫁接通过调节番茄的蛋白质组和靶向基因调控网络增强干旱胁迫耐受性。

Grafting enhances drought stress tolerance by regulating the proteome and targeted gene regulatory networks in tomato.

作者信息

Mahapatra Pritam Paramguru, Bae Dong Won, Notaguchi Michitaka, Muneer Sowbiya

机构信息

Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

出版信息

Front Plant Sci. 2025 Aug 20;16:1591437. doi: 10.3389/fpls.2025.1591437. eCollection 2025.

Abstract

Tomato (), a widely cultivated yet perishable crop, depends heavily on adequate sunlight and water for optimal growth and productivity. However, due to unavoidable environmental and climatic changes-particularly drought-its productivity has declined in recent years. Grafting, an ancient horticultural practice, is known to enhance yield and combat abiotic stress by regulating physiological and cellular processes. The present study investigated drought tolerance in tomato at both the proteomic and transcriptomic levels. During the initial physiological screening stage, two drought-resistant genotypes of were selected as rootstocks and drought-susceptible genotypes as scions. Among six genotypes evaluated under drought stress (based on relative water content, chlorophyll fluorescence, and stomatal conductance), graft combinations G1 and G4 demonstrated superior performance. These combinations were subsequently selected for molecular analyses to investigate gene expression patterns and stress-responsive pathways. Our findings revealed that grafting susceptible tomato genotypes onto resistant rootstocks mitigated the deleterious effects of drought stress by improving photosynthetic pigment levels and reducing oxidative stress. A proteomic investigation observed that grafting improved cellular responses, metabolic processes, and stress response pathways. Furthermore, transcriptomic studies of stress-related genes, including , , , , , , , and , revealed enhanced stress tolerance in the G1 and G4 graft combinations.

摘要

番茄()是一种广泛种植但易腐烂的作物,其最佳生长和产量严重依赖充足的阳光和水分。然而,由于不可避免的环境和气候变化——尤其是干旱——近年来其产量有所下降。嫁接是一种古老的园艺技术,已知可通过调节生理和细胞过程来提高产量并抵御非生物胁迫。本研究在蛋白质组学和转录组学水平上研究了番茄的耐旱性。在初始生理筛选阶段,选择了两种耐旱基因型作为砧木,以及易感干旱基因型作为接穗。在干旱胁迫下评估的六种基因型中(基于相对含水量、叶绿素荧光和气孔导度),嫁接组合G1和G4表现出优异的性能。随后选择这些组合进行分子分析,以研究基因表达模式和胁迫响应途径。我们的研究结果表明,将易感番茄基因型嫁接到抗性砧木上,通过提高光合色素水平和降低氧化应激,减轻了干旱胁迫的有害影响。蛋白质组学研究观察到,嫁接改善了细胞反应、代谢过程和胁迫反应途径。此外,对包括、、、、、、和在内的胁迫相关基因的转录组学研究表明,G1和G4嫁接组合的胁迫耐受性增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b0b/12405251/aebf95805d14/fpls-16-1591437-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验