Shi Hulin, Li Zengrong, Chen Shenglan, Yao Yangtao, Wu Linyi, Shao Ruowen, Sheng Chang, Zhong Shuxian, Wang Dongmei, Zhao Yuling, Zhao Leihong, Bai Song
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University Jinhua Zhejiang 321004 P. R. China
Zhejiang Key Laboratory of Digital Intelligence Monitoring and Restoration of Watershed Environment, College of Geography and Environmental Sciences, Jinhua Normal University Jinhua Zhejiang 321004 P. R. China.
Chem Sci. 2025 Aug 28. doi: 10.1039/d5sc03122b.
Selective photoreduction of CO with HO to hydrocarbons is challenged by inadequate and uncontrollable electron and proton feeding. Herein, this limitation is overcome by integrating HO dissociation, CO reduction, and O evolution catalysts into a dual S-scheme heterojunction and regulating exposed facets of the heterojunction supports. In this design, H and OH species generated by HO dissociation on the NH-MIL-125 support transfer to the T-COF shell and FeO insert for CO reduction and O evolution, respectively. Mechanistic investigations reveal that increasing NH-MIL-125{001} facet exposure promotes proton spillover, while simultaneously causing more active electrons to accumulate on the T-COF instead of NH-MIL-125. This suppresses H evolution on the NH-MIL-125 core, directing more protons to the T-COF shell for CO reduction. Consequently, the *CO intermediate becomes more prone to hydrogenation to CH rather than desorption to CO or C-C coupling to form C products, thereby progressively increasing CH production while decreasing H, CO, CH, and CH evolution. The three-in-one heterojunction with the highest proportion of NH-MIL-125{001} facets achieves a remarkable CH productivity of 154.3 μmol g h with a selectivity of 87.4%. This work highlights the synergistic advantages of heterojunction construction and facet engineering in concurrently optimizing electron and proton supply for CO hydrogenation.
用HO将CO选择性光还原为碳氢化合物面临着电子和质子供应不足且无法控制的挑战。在此,通过将HO解离、CO还原和析氧催化剂整合到双S型异质结中,并调节异质结载体的暴露晶面,克服了这一限制。在这种设计中,NH-MIL-125载体上HO解离产生的H和OH物种分别转移到T-COF壳层和FeO插入层用于CO还原和析氧。机理研究表明,增加NH-MIL-125{001}晶面暴露促进质子溢出,同时使更多活性电子积累在T-COF而不是NH-MIL-125上。这抑制了NH-MIL-125核上的析氢反应,引导更多质子到T-COF壳层进行CO还原。因此,*CO中间体更倾向于氢化成CH而不是解吸为CO或进行C-C偶联形成C产物,从而逐渐增加CH产量,同时减少H、CO、CH和CH的析出。具有最高比例NH-MIL-125{001}晶面的三合一异质结实现了154.3 μmol g h的显著CH产率,选择性为87.4%。这项工作突出了异质结构建和晶面工程在同时优化CO加氢电子和质子供应方面的协同优势。