Suppr超能文献

使用组织工程化动脉粥样硬化帽模型研究微钙化大小和体积对胶原基质及组织力学的影响。

Investigating the impact of microcalcification size and volume on collagenous matrix and tissue mechanics using a tissue-engineered atherosclerotic cap model.

作者信息

Jansen Imke L, Șahin Deniz, Gijsen Frank J H, Farrell Eric, van der Heiden Kim

机构信息

Department of Biomedical Engineering, Thorax Center Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.

Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.

出版信息

Front Cardiovasc Med. 2025 Aug 20;12:1629285. doi: 10.3389/fcvm.2025.1629285. eCollection 2025.

Abstract

Atherosclerotic plaque rupture can lead to thrombotic cardiovascular events such as stroke and myocardial infarction. Computational models have shown that microcalcifications (calcified particles with a diameter < 50 μm) in the atherosclerotic plaque cap can increase cap tissue stresses and consequently contribute to plaque rupture. Microcalcification characteristics, such as particle size and volume fraction, have been implicated to affect cap stresses. However, the effect of these characteristics on tissue mechanics within a collagenous matrix, has not been investigated experimentally. In this study, we employ a tissue-engineered model of the atherosclerotic plaque cap with human myofibroblasts to assess the impact of microcalcification size and volume fraction on cap mechanics and rupture. To mimic human microcalcification size and volume, hydroxyapatite microparticles, in two size ranges (diameter up to 5 μm or up to 50 μm) and two volumes (1 v/v% and 5 v/v%) were incorporated homogenously throughout the tissue-engineered model. 5 v/v% of particles caused a significant lowering of the mechanical properties as was shown by a decrease in stiffness and ultimate tensile stress under uniaxial tensile loading. Additionally, the 5 v/v% of hydroxyapatite particles, in both size ranges, caused a reduced tissue compaction during culture. This might indicate that hydroxyapatite particles influence mechanobiological processes governing tissue organisation and consequent tissue mechanics. These experimental data support computational findings regarding the detrimental role of microcalcifications on cap rupture risk and highlight the importance of volume fraction. Furthermore, this study indicates an additional importance to look at the interplay between calcification, its effect on plaque cap-resident cells and the consequent effect on tissue mechanics.

摘要

动脉粥样硬化斑块破裂可导致血栓性心血管事件,如中风和心肌梗死。计算模型表明,动脉粥样硬化斑块帽中的微钙化(直径<50μm的钙化颗粒)会增加帽组织应力,从而导致斑块破裂。微钙化特征,如颗粒大小和体积分数,被认为会影响帽应力。然而,这些特征对胶原基质内组织力学的影响尚未进行实验研究。在本研究中,我们采用含有人肌成纤维细胞的动脉粥样硬化斑块帽组织工程模型,以评估微钙化大小和体积分数对帽力学和破裂的影响。为模拟人类微钙化大小和体积,将两种尺寸范围(直径达5μm或达50μm)和两种体积(1 v/v%和5 v/v%)的羟基磷灰石微粒均匀掺入整个组织工程模型中。正如单轴拉伸载荷下刚度和极限拉伸应力的降低所示,5 v/v%的微粒导致力学性能显著下降。此外,两种尺寸范围内5 v/v%的羟基磷灰石颗粒在培养过程中导致组织压实减少。这可能表明羟基磷灰石颗粒影响控制组织组织和随之而来的组织力学的力学生物学过程。这些实验数据支持了关于微钙化对帽破裂风险的有害作用的计算结果,并突出了体积分数的重要性。此外,本研究表明,研究钙化之间的相互作用、其对斑块帽驻留细胞的影响以及随之对组织力学的影响具有额外的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/12405381/788c401f8a97/fcvm-12-1629285-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验