Suppr超能文献

微钙化的存在及位置对动脉粥样硬化斑块破裂的影响:一种组织工程学方法。

The effect of presence and location of microcalcifications on atherosclerotic plaque rupture: A tissue-engineering approach.

作者信息

Crielaard Hanneke, Jansen Imke, van der Heiden Kim, Kremers Gert-Jan, Gijsen Frank J H, Farrell Eric, Akyildiz Ali C

机构信息

Department of Cardiology, Biomedical Engineering, Cardiovascular Institute, Thorax Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.

Erasmus Optical Imaging Centre, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.

出版信息

J Mech Behav Biomed Mater. 2025 Nov;171:107139. doi: 10.1016/j.jmbbm.2025.107139. Epub 2025 Jul 16.

Abstract

Rupture of the cap of an atherosclerotic plaque can trigger thrombotic cardiovascular events. It has been suggested, through computational models, that the presence and specific location of microcalcifications in the atherosclerotic cap can increase the risk of cap rupture. However, the experimental confirmation of this hypothesis is lacking. In this study, we investigated how the presence and location of microcalcifications, relative to the lumen, influence (local) mechanics and rupture behavior of atherosclerotic plaque caps. Using tissue-engineered fibrous cap analogs with hydroxyapatite (HA) clusters to mimic calcifications in human plaque caps, we replicated the microcalcification distribution observed in human carotid plaques, as identified by our histological analysis. The analogs were imaged using multiphoton microscopy with second-harmonic generation to assess local collagen fiber orientation and dispersion. Subsequently, they underwent uniaxial tensile testing to failure, during which local strain and failure characteristics were analyzed. Our results revealed that HA clusters, particularly those in the luminal region, contribute to increased local collagen fiber dispersion. Moreover, the presence of HA clusters reduced both failure tensile stress and strain in the TE cap analogs. Besides, the rupture location shifted toward the site of HA clusters. Additionally, rupture initiation was consistently found in high-strain regions, and in 86 % of the analogs, even at the highest strain location in the sample. Our findings suggest that microcalcification clusters in plaque caps may increase the cap rupture risk and relocate the rupture site. Moreover, local strain measurements can serve as an additional tool for plaque cap rupture risk assessment.

摘要

动脉粥样硬化斑块帽的破裂可引发血栓性心血管事件。通过计算模型表明,动脉粥样硬化斑块帽中微钙化的存在及其特定位置会增加斑块帽破裂的风险。然而,这一假设缺乏实验证实。在本研究中,我们调查了相对于管腔而言,微钙化的存在和位置如何影响动脉粥样硬化斑块帽的(局部)力学性能和破裂行为。我们使用带有羟基磷灰石(HA)簇的组织工程纤维帽类似物来模拟人类斑块帽中的钙化,通过组织学分析确定后,复制了在人类颈动脉斑块中观察到的微钙化分布。使用具有二次谐波产生的多光子显微镜对这些类似物进行成像,以评估局部胶原纤维的取向和分散情况。随后,对它们进行单轴拉伸试验直至破坏,在此过程中分析局部应变和破坏特征。我们的结果表明,HA簇,尤其是管腔区域的HA簇,会导致局部胶原纤维分散增加。此外,HA簇的存在降低了TE帽类似物的破坏拉伸应力和应变。此外,破裂位置向HA簇所在部位偏移。另外,破裂起始始终出现在高应变区域,并且在86%的类似物中,甚至出现在样品中的最高应变位置。我们的研究结果表明,斑块帽中的微钙化簇可能会增加斑块帽破裂风险并使破裂部位重新定位。此外,局部应变测量可作为斑块帽破裂风险评估的额外工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验