Chiaro Pierluigi Di, Diaferia Giuseppe R, Natoli Gioacchino, Barozzi Iros
Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milano, Italy.
Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf101.
Pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of pancreatic cancer, exhibits profound intratumor morphological heterogeneity, complicating the elucidation of the underlying molecular mechanisms driving its progression.
We present and validate an optimized framework for RNA sequencing (RNA-seq) of multiple spatially resolved laser micro-dissected tumor areas (LMD-seq), along with methodological and analytical details to maximize reproducibility and data mining. This approach enhances sensitivity in detecting lowly expressed genes, outperforming single-cell RNA-seq methods, particularly in identifying rare tumor cell populations and transcriptional programs with low expression. We also present a detailed map of predicted regulatory networks underlying distinct PDAC morpho-biotypes, revealing novel mechanisms and key regulators associated with each subtype.
This study provides fully reproducible workflows, including processed data objects, documented code, and computational predictions of the regulatory activities, enabling robust exploration of intratumor heterogeneity of PDAC. The proposed methodology, datasets, and catalog of the molecular and regulatory mechanisms offer a framework for future studies and applications in PDAC and other cancers.
胰腺导管腺癌(PDAC)是胰腺癌最常见且侵袭性最强的形式,表现出显著的肿瘤内形态学异质性,这使得阐明驱动其进展的潜在分子机制变得复杂。
我们提出并验证了一个针对多个空间分辨的激光显微切割肿瘤区域进行RNA测序(RNA-seq)的优化框架(LMD-seq),以及方法学和分析细节,以最大限度地提高可重复性和数据挖掘能力。这种方法在检测低表达基因方面提高了灵敏度,优于单细胞RNA-seq方法,特别是在识别罕见肿瘤细胞群体和低表达的转录程序方面。我们还展示了不同PDAC形态生物型潜在调控网络的详细图谱,揭示了与每个亚型相关的新机制和关键调控因子。
本研究提供了完全可重复的工作流程,包括处理后的数据对象、记录的代码以及调控活性的计算预测,从而能够对PDAC的肿瘤内异质性进行有力探索。所提出的方法、数据集以及分子和调控机制目录为未来PDAC及其他癌症的研究和应用提供了一个框架。