Shi Xueyi, Zhang Dexun, Liang Shenwen, Meng Wenjing, Luo Huoling, Zhang Tianqiao
School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, China.
Guilin Redola Intelligent Technology Co., Ltd., Guilin, China.
Int J Comput Assist Radiol Surg. 2025 Sep 5. doi: 10.1007/s11548-025-03506-x.
Cataract surgery is among the most frequently performed procedures worldwide. Accurate, real-time segmentation of the cornea and surgical instruments is vital for intraoperative guidance and surgical education. However, most existing deep learning-based segmentation methods depend on pixel-level annotations, which are time-consuming and limit practical deployment.
We present EllipseNet, an anchor-free framework utilizing ellipse-based modeling for real-time corneal segmentation in cataract surgery. Built upon the Hourglass network for feature extraction, EllipseNet requires only simple rectangular bounding box annotations from users. It then autonomously infers the major and minor axes of the corneal ellipse, generating elliptical bounding boxes that more precisely match corneal shapes.
EllipseNet achieves efficient real-time performance by segmenting each image within 42 ms and attaining a Dice accuracy of 95.81%. It delivers segmentation speed nearly three times faster than state-of-the-art models, while maintaining similar accuracy levels.
EllipseNet provides rapid and accurate corneal segmentation in real time, significantly reducing annotation workload for practitioners. Its design streamlines the segmentation pipeline, lowering the barrier for clinical application. The source code is publicly available at: https://github.com/shixueyi/corneal-segmentation .
白内障手术是全球范围内最常开展的手术之一。准确、实时地分割角膜和手术器械对于术中引导和手术教学至关重要。然而,大多数现有的基于深度学习的分割方法依赖于像素级注释,这既耗时又限制了实际应用。
我们提出了EllipseNet,这是一个无锚点框架,利用基于椭圆的模型在白内障手术中进行实时角膜分割。基于沙漏网络进行特征提取构建的EllipseNet,只需要用户提供简单的矩形边界框注释。然后,它会自动推断角膜椭圆的长轴和短轴,生成更精确匹配角膜形状的椭圆边界框。
EllipseNet通过在42毫秒内分割每张图像并达到95.81%的骰子准确率,实现了高效的实时性能。它的分割速度比最先进的模型快近三倍,同时保持了相似的准确率水平。
EllipseNet实时提供快速、准确的角膜分割,显著减少了从业者的注释工作量。其设计简化了分割流程,降低了临床应用的障碍。源代码可在以下网址公开获取:https://github.com/shixueyi/corneal-segmentation 。