Li Renjie, Lu Xiangxing, Zhao Jizhang, Chen Weibing, Wei Huanwei, Liu Cong
Shandong Electric Power Engineering Consulting Institute Corp., Ltd., Jinan, China.
School of Civil Engineering, Shandong Jianzhu University, Jinan, China.
PLoS One. 2025 Sep 5;20(9):e0331213. doi: 10.1371/journal.pone.0331213. eCollection 2025.
In engineering structure performance monitoring, capturing real-time on-site data and conducting precise analysis are critical for assessing structural condition and safety. However, equipment instability and complex on-site environments often lead to data anomalies and gaps, hindering accurate performance evaluation. This study, conducted within a wind farm reinforcement project in Shandong Province, addresses these challenges by focusing on anomaly detection and data imputation for weld nail strain, anchor cable axial force, and concrete strain. We propose an innovative iterative rolling difference-Z-score method for anomaly detection and a machine learning-based imputation framework combining linear interpolation with LightGBM. Experimental results show that the iterative rolling difference-Z-score method detects single-point and clustered anomalies with a Z-score threshold of 4, achieving robust performance even with 80% data loss. The imputation framework maintains low mean squared error (MSE) of 0.0214-0.0227 and root mean squared error (RMSE) of 0.14-0.15 for continuous missing data scenarios (60-200 points), with reliable reconstruction up to 50% data loss. This research provides a robust solution for ensuring the precision and integrity of wind farm monitoring data, enhancing long-term structural reliability in renewable energy applications.
在工程结构性能监测中,获取实时现场数据并进行精确分析对于评估结构状况和安全性至关重要。然而,设备不稳定和复杂的现场环境常常导致数据异常和缺失,阻碍了准确的性能评估。本研究在山东省一个风电场加固项目中开展,通过关注焊缝钉应变、锚索轴向力和混凝土应变的异常检测和数据插补来应对这些挑战。我们提出了一种用于异常检测的创新型迭代滚动差分 - Z分数方法,以及一个将线性插值与LightGBM相结合的基于机器学习的数据插补框架。实验结果表明,迭代滚动差分 - Z分数方法在Z分数阈值为4时能够检测单点和聚类异常,即使在数据丢失80%的情况下也能实现稳健性能。对于连续缺失数据场景(60 - 200个点),插补框架保持较低的平均平方误差(MSE)为0.0214 - 0.0227,均方根误差(RMSE)为0.14 - 0.15,在数据丢失高达50%时仍能可靠重建。本研究为确保风电场监测数据的精度和完整性提供了一种稳健的解决方案,提高了可再生能源应用中结构的长期可靠性。