Suppr超能文献

智能农业系统中一种基于物联网的高效作物损害预测框架。

An efficient IoT-based crop damage prediction framework in smart agricultural systems.

作者信息

Rezk Nermeen Gamal, Attia Abdel-Fattah, El-Rashidy Mohamed A, El-Sayed Ayman, Hemdan Ezz El-Din

机构信息

Department of Computer Science and Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt.

Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menoufia, Egypt.

出版信息

Sci Rep. 2025 Jul 30;15(1):27742. doi: 10.1038/s41598-025-12921-8.

Abstract

This paper introduces an efficient IoT-based framework for predicting crop damage within smart agricultural systems, focusing on the integration of Internet of Things (IoT) sensor data with advanced machine learning (ML) and ensemble learning (EL) techniques. The primary objective is to develop a reliable decision support system capable of forecasting crop health status classifying crops as healthy, pesticide-damaged, or affected by other stressors while addressing a critical challenge: the presence of missing data in real-time agricultural datasets. To overcome this limitation, the proposed approach incorporates robust data imputation strategies using both traditional ML methods and powerful EL models. Techniques such as K-Nearest Neighbors, linear regression, and ensemble-based imputers are evaluated for their effectiveness in reconstructing incomplete data. Furthermore, Bayesian Optimization is applied to fine-tune EL classifiers including XGBoost, CatBoost, and LightGBM (LGBM), enhancing their predictive performance. Extensive experiments demonstrate that XGBoost outperforms all other models, achieving an average sensitivity of 88.1%, accuracy of 89.56%, precision of 83.4%, and F1-score of 84.8%. CatBoost and LGBM also deliver competitive results, with CatBoost achieving 90.50% accuracy and LGBM reaching 90.23%. In addition, the imputation capability of the XGBoost model is validated through a low Mean Squared Error (MSE) of 0.0213 and a high R-squared (R) value of 0.99, confirming its effectiveness for both prediction and data recovery tasks. The key contributions of this innovative work include the design of a low-cost, power-efficient, and scalable crop damage prediction system, the integration of real-time IoT data with optimized ensemble learning, and a comprehensive evaluation of imputation techniques to enhance model robustness. This framework is particularly suited for deployment in resource-constrained agricultural environments, advancing the field of smart farming through intelligent, data-driven solutions.

摘要

本文介绍了一种基于物联网的高效框架,用于预测智能农业系统中的作物损害,重点是将物联网(IoT)传感器数据与先进的机器学习(ML)和集成学习(EL)技术相结合。主要目标是开发一个可靠的决策支持系统,能够预测作物健康状况,将作物分类为健康、农药损害或受其他压力源影响,同时应对一个关键挑战:实时农业数据集中存在缺失数据。为克服这一限制,所提出的方法采用了强大的数据插补策略,使用传统的ML方法和强大的EL模型。对诸如K近邻、线性回归和基于集成的插补器等技术在重建不完整数据方面的有效性进行了评估。此外,应用贝叶斯优化对包括XGBoost、CatBoost和LightGBM(LGBM)在内的EL分类器进行微调,提高其预测性能。大量实验表明,XGBoost优于所有其他模型,平均灵敏度达到88.1%,准确率为89.56%,精确率为83.4%,F1分数为84.8%。CatBoost和LGBM也取得了有竞争力的结果,CatBoost的准确率达到90.50%,LGBM达到90.23%。此外,XGBoost模型的插补能力通过0.0213的低均方误差(MSE)和0.99的高决定系数(R)值得到验证,证实了其在预测和数据恢复任务中的有效性。这项创新工作的关键贡献包括设计一个低成本、高能效且可扩展的作物损害预测系统,将实时物联网数据与优化的集成学习相结合,以及对插补技术进行全面评估以增强模型鲁棒性。该框架特别适合在资源受限的农业环境中部署,通过智能、数据驱动的解决方案推动智能农业领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0e/12307800/9cbc8e661f8d/41598_2025_12921_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验