Jiang Haowen, Tiche Sarah Jane, He Clifford Jiajun, Liu Junyan, Bian Fuyun, Jedoui Mohamed, Forgo Balint, Islam Md Tauhidul, Zhao Meng, Emengo Pamela, He Bo, Li Yang, Li Albert M, Truong Anh T, Ho Jestine, Simmermaker Cathyrin, Yang Yanan, Zhou Meng-Ning, Hu Zhen, Svensson Katrin J, Cuthbertson Daniel J, Hazard Florette K, Xing Lei, Shimada Hiroyuki, Chiu Bill, Ye Jiangbin
Department of Radiation Oncology, Stanford University, Stanford, CA 94305.
Department of Surgery, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2025 Sep 9;122(36):e2502483122. doi: 10.1073/pnas.2502483122. Epub 2025 Sep 5.
Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation. U-C-glucose/glutamine isotope tracing revealed a metabolic shift from the pentose phosphate pathway to oxidative phosphorylation, accelerating the tricarboxylic acid cycle and switching substrate preference from glutamine to glucose. These effects were abolished by electron transport chain (ETC) inhibitors or in ρ cells lacking mitochondrial DNA, emphasizing the necessity of mitochondrial function for differentiation. Dietary RA and uncoupler treatment promoted tumor differentiation in an orthotopic neuroblastoma xenograft model, evidenced by neuropil production and Schwann cell recruitment. Single-cell RNA sequencing of xenografts revealed that this strategy effectively eliminated the stem cell population, promoted differentiation, and increased mitochondrial gene signatures along the differentiation trajectory, potentially improving patient outcomes. Collectively, our findings establish a mitochondria-centric therapeutic strategy for inducing tumor differentiation, suggesting that maintaining/driving differentiation in tumor requires not only ATP production but also continuous ATP consumption and sustained ETC activity.
肿瘤中线粒体质量和数量的减少与去分化及恶性程度增加有关。然而,目前尚不清楚如何恢复肿瘤中的线粒体数量和质量,以及线粒体恢复是否能驱动肿瘤分化。我们的研究表明,使用视黄酸(RA)恢复线粒体功能以促进线粒体生物合成,并使用线粒体解偶联剂增强呼吸作用,可协同驱动神经母细胞瘤分化并抑制增殖。U-C-葡萄糖/谷氨酰胺同位素示踪显示代谢从磷酸戊糖途径转向氧化磷酸化,加速三羧酸循环,并将底物偏好从谷氨酰胺转变为葡萄糖。电子传递链(ETC)抑制剂或在缺乏线粒体DNA的ρ细胞中,这些效应被消除,强调了线粒体功能对分化的必要性。在原位神经母细胞瘤异种移植模型中,饮食中添加RA和解偶联剂治疗可促进肿瘤分化,神经毡生成和雪旺细胞募集证明了这一点。异种移植的单细胞RNA测序表明,该策略有效地消除了干细胞群体,促进了分化,并沿着分化轨迹增加了线粒体基因特征,可能改善患者预后。总的来说,我们的研究结果建立了一种以线粒体为中心的诱导肿瘤分化的治疗策略,表明在肿瘤中维持/驱动分化不仅需要ATP生成,还需要持续的ATP消耗和持续的ETC活性。