Suppr超能文献

缺血对氧化磷酸化级联的每个环节造成损伤,提高了心脏线粒体中电子传递链的驱动力和 ROS 的产生。

Ischemic damage to every segment of the oxidative phosphorylation cascade elevates ETC driving force and ROS production in cardiac mitochondria.

机构信息

Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland.

Laboratory of Muscle Energetics, National Heart, Lung, and Blood Institute and National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland.

出版信息

Am J Physiol Heart Circ Physiol. 2022 Sep 1;323(3):H499-H512. doi: 10.1152/ajpheart.00129.2022. Epub 2022 Jul 22.

Abstract

Myocardial ischemia has long-lasting negative impacts on cardiomyocyte mitochondrial ATP production. However, the location(s) of damage to the oxidative phosphorylation pathway responsible for altered mitochondrial function is unclear. Mitochondrial reactive oxygen species (ROS) production increases following ischemia, but the specific factors controlling this increase are unknown. To determine how ischemia affects the mitochondrial energy conversion cascade and ROS production, mitochondrial driving forces [redox potential and membrane potential (ΔΨ)] were measured at resting, intermediate, and maximal respiration rates in mitochondria isolated from rat hearts after 60 min of control flow (control) or no-flow ischemia (ischemia). The effective activities of the dehydrogenase enzymes, the electron transport chain (ETC), and ATP synthesis and transport were computed using the driving forces and flux. Ischemia lowered maximal mitochondrial respiration rates and diminished the responsiveness of respiration to both redox potential and ΔΨ. Ischemia decreased the activities of every component of the oxidative phosphorylation pathway: the dehydrogenase enzymes, the ETC, and ATP synthesis and transport. ROS production was linearly related to driving force down the ETC; however, ischemia mitochondria demonstrated a greater driving force down the ETC and higher ROS production. Overall, results indicate that ischemia ubiquitously damages the oxidative phosphorylation pathway, reduces mitochondrial sensitivity to driving forces, and augments the propensity for electrons to leak from the ETC. These findings underscore that strategies to improve mitochondrial function following ischemia must target the entire mitochondrial energy conversion cascade. This integrative analysis is the first to assess how myocardial ischemia alters the mitochondrial driving forces and the degree to which individual segments of the mitochondrial energy transduction pathway contribute to diminished function following ischemia. This investigation demonstrates that increased reactive oxygen species production following ischemia is related to a lower effective activity of the electron transport chain and a greater driving force down the electron transport chain.

摘要

心肌缺血对心肌细胞线粒体 ATP 生成产生持久的负面影响。然而,负责改变线粒体功能的氧化磷酸化途径的损伤部位尚不清楚。缺血后,线粒体活性氧(ROS)的产生增加,但控制这种增加的具体因素尚不清楚。为了确定缺血如何影响线粒体能量转换级联和 ROS 产生,在对照流量(对照)或无流量缺血(缺血) 60 分钟后,从大鼠心脏中分离的线粒体中测量了在静息、中间和最大呼吸率下的线粒体驱动力[氧化还原电位和膜电位(ΔΨ)]。使用驱动力和通量计算脱氢酶酶、电子传递链(ETC)和 ATP 合成和转运的有效活性。缺血降低了最大线粒体呼吸速率,并降低了呼吸对氧化还原电位和 ΔΨ的反应性。缺血降低了氧化磷酸化途径的每个组成部分的活性:脱氢酶酶、ETC 和 ATP 合成和转运。ROS 产生与 ETC 驱动力呈线性相关;然而,缺血线粒体显示出更大的 ETC 驱动力和更高的 ROS 产生。总的来说,结果表明缺血普遍损伤氧化磷酸化途径,降低线粒体对驱动力的敏感性,并增加电子从 ETC 漏出的倾向。这些发现强调,改善缺血后线粒体功能的策略必须针对整个线粒体能量转换级联。这种综合分析是首次评估心肌缺血如何改变线粒体驱动力以及线粒体能量转导途径的各个部分对缺血后功能减退的贡献程度。该研究表明,缺血后活性氧产生增加与电子传递链的有效活性降低以及电子传递链驱动力增加有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc4/9448280/99a9564e0cf8/ajpheart.00129.2022_f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验