Suppr超能文献

用于预测二尖瓣手术期间或术后输血风险的机器学习:一项多中心回顾性队列研究。

Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study.

作者信息

Wang Yuhan, Liu Leping, Fan Kexin, Wang Yongjun, Zhang Jiyan, Ma Xianjun, Huang Yuanshuai, Wang Xinhua, Chen Bingyu, Zhang Jinsong, Gui Rong

机构信息

Department of Transfusion, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.

Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, China.

出版信息

Sci Rep. 2025 Sep 5;15(1):32380. doi: 10.1038/s41598-025-16924-3.

Abstract

This study aimed to identify the optimal prediction method and key preoperative variables for red blood cell (RBC) transfusion risk in patients undergoing mitral valve surgery. We conducted a retrospective study involving 1477 patients from eight large tertiary hospitals in China who underwent mitral valve surgery with cardiopulmonary bypass. From thirty collected preoperative variables, the Max-Relevance and Min-Redundancy (mRMR) method was used for feature selection, and various machine learning models were evaluated. Of the 1477 patients, 862 received RBC transfusions. The mRMR method identified ten significant preoperative variables. The LightGBM model demonstrated superior performance, achieving an area under the curve (AUC) of 0.935 in the training set and 0.734 in the validation set, with 74.2% accuracy in a prospective dataset. SHAP analysis revealed the ten most influential variables were hematocrit, RBC count, weight, body mass index, fibrinogen, hemoglobin, height, age, left ventricular dilation, and sex. In conclusion, LightGBM was identified as the optimal model for predicting RBC transfusion needs. The model's high accuracy can assist clinicians in anticipating transfusions and improving blood management decisions.

摘要

本研究旨在确定二尖瓣手术患者红细胞(RBC)输血风险的最佳预测方法和关键术前变量。我们进行了一项回顾性研究,纳入了中国八家大型三级医院1477例行二尖瓣体外循环手术的患者。从收集的30个术前变量中,采用最大相关最小冗余(mRMR)方法进行特征选择,并评估了各种机器学习模型。1477例患者中,862例接受了RBC输血。mRMR方法确定了10个显著的术前变量。LightGBM模型表现出卓越性能,在训练集中曲线下面积(AUC)为0.935,在验证集中为0.734,在前瞻性数据集中准确率为74.2%。SHAP分析显示,最具影响力的10个变量为血细胞比容、红细胞计数、体重、体重指数、纤维蛋白原、血红蛋白、身高、年龄、左心室扩张和性别。总之,LightGBM被确定为预测RBC输血需求的最佳模型。该模型的高准确率可协助临床医生预测输血需求并改善血液管理决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14f/12413438/37901c207b14/41598_2025_16924_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验