Li Yanqiang, Cui Ming, Xu Junlong, Yang Zhongzheng, Chen Siru
School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin 124221, China.
J Colloid Interface Sci. 2025 Sep 3;702(Pt 1):138918. doi: 10.1016/j.jcis.2025.138918.
Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved. Systematic characterizations confirm the highly dense planar FeN configuration and abundant micropores, which collectively enhance ORR kinetics. The Fe-SA@NC catalyst exhibits a remarkable half-wave potential of 0.89 V for ORR, and demonstrates a four-electron pathway with negligible HO yield. When integrated into ZABs, Fe-SA@NC delivers a high open-circuit voltage of 1.57 V and a high-power density of 184.1 mW cm. In addition, its performance is also not affected by bending in flexible ZABs. The universality of this method is validated by extending it to Co-SA@NC and Ni-SA@NC, all showing competitive ORR activity. This work provides a generalizable platform for designing high-density SACs and paves the way for their application in next-generation wearable energy devices.
开发具有密集活性位点和通用合成策略的单原子催化剂(SAC)仍然是一项严峻挑战。在此,我们提出了一种可扩展的通用策略,用于合成锚定在氮掺杂多孔碳(M-SA@NC,M = Fe、Co、Ni)中的高密度过渡金属单原子位点,并研究它们对柔性锌空气电池(ZAB)的氧还原反应(ORR)催化活性。采用简便的配位-热解策略,实现了具有高金属负载量的原子分散M-N位点。系统表征证实了高度密集的平面FeN构型和丰富的微孔,它们共同增强了ORR动力学。Fe-SA@NC催化剂对ORR表现出0.89 V的显著半波电位,并展示了四电子途径,HO产量可忽略不计。当集成到ZAB中时,Fe-SA@NC提供1.57 V的高开路电压和184.1 mW cm的高功率密度。此外,其性能在柔性ZAB中也不受弯曲影响。通过将该方法扩展到Co-SA@NC和Ni-SA@NC验证了该方法的通用性,所有这些都显示出具有竞争力的ORR活性。这项工作为设计高密度SAC提供了一个可推广的平台,并为其在下一代可穿戴能源设备中的应用铺平了道路。