Suppr超能文献

解读疾病特异性糖基化:通过血清糖型解析糖尿病亚型

Deciphering disease-specific glycosylation: unraveling diabetes subtypes through serum glycopattern.

作者信息

Zhang Rumeng, Zhou Yu, Wen Shengye, Chen Yan, Du Jing, Ma Junfeng, Xia Jun, Yang Shuang

机构信息

Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

出版信息

Anal Bioanal Chem. 2025 Sep 6. doi: 10.1007/s00216-025-06089-3.

Abstract

Latent autoimmune diabetes in adults (LADA) is a slowly progressing form of diabetes that develops in adulthood, characterized by autoimmune destruction of pancreatic β-cells and subsequent insulin deficiency, akin to type 1 diabetes (T1D). Due to its shared genetic, immunological, and metabolic features with both T1D and type 2 diabetes (T2D), LADA is frequently misdiagnosed and inappropriately treated as T2D. To address this, we developed the A.NG algorithm, which identifies serum glycopatterns by calculating the ratio of upregulated to downregulated N-glycans, thereby facilitating the detection of subtle glycan alterations specific to each diabetes subtype. Our method, which utilizes matrix-assisted laser desorption ionization (MALDI) for N-glycan profiling, revealed distinct glycan patterns across T1D, T2D, and LADA, with observed correlations achieving an AUC of 0.918 in this cohort. While these findings demonstrate the technical feasibility of detecting subtype-associated glycosylation changes, their clinical utility for subtype differentiation requires validation in larger studies with refined quantification approaches. Furthermore, complementary ELISA and intact glycopeptide analyses showed that enzymes like FUT8 and FUCA1 contribute to altered glycan expression patterns on specific glycoproteins, which could serve as potential biomarkers for LADA. In conclusion, the A.NG algorithm represents a promising novel approach for distinguishing between LADA and T1D or T2D, with the potential to significantly improve the diagnosis and management of these diabetes subtypes.

摘要

成人隐匿性自身免疫性糖尿病(LADA)是一种在成年期发病的缓慢进展型糖尿病,其特征是胰腺β细胞发生自身免疫性破坏并随后出现胰岛素缺乏,类似于1型糖尿病(T1D)。由于LADA与T1D和2型糖尿病(T2D)具有共同的遗传、免疫和代谢特征,因此常被误诊为T2D并接受不恰当的治疗。为了解决这一问题,我们开发了A.NG算法,该算法通过计算上调与下调N聚糖的比例来识别血清糖型,从而有助于检测每种糖尿病亚型特有的细微聚糖改变。我们利用基质辅助激光解吸电离(MALDI)进行N聚糖谱分析的方法,揭示了T1D、T2D和LADA之间不同的聚糖模式,在该队列中观察到的相关性AUC达到0.918。虽然这些发现证明了检测亚型相关糖基化变化的技术可行性,但其在亚型区分方面的临床实用性需要在采用精细定量方法的更大规模研究中进行验证。此外,互补的ELISA和完整糖肽分析表明,FUT8和FUCA1等酶会导致特定糖蛋白上聚糖表达模式的改变,这些糖蛋白可作为LADA的潜在生物标志物。总之,A.NG算法是一种有前景的区分LADA与T1D或T2D的新方法,有可能显著改善这些糖尿病亚型的诊断和管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验