Sahashi Yuki, Ieki Hirotaka, Yuan Victoria, Christensen Matthew, Vukadinovic Milos, Binder-Rodriguez Christina, Rhee Justin, Zou James Y, He Bryan, Cheng Paul, Ouyang David
Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
Division of Cardiology, Department of Medicine, Stanford University, Palo Alto, California, USA.
J Am Coll Cardiol. 2025 Aug 22. doi: 10.1016/j.jacc.2025.07.053.
Accurate measurement of echocardiographic parameters is crucial for the diagnosis of cardiovascular disease and tracking of change over time; however, manual assessment requires time-consuming effort and can be imprecise. Artificial intelligence has the potential to reduce clinician burden by automating the time-intensive task of comprehensive measurement of echocardiographic parameters.
The purpose of this study was to develop and validate open-sourced deep learning semantic segmentation models for the automated measurement of 18 anatomic and Doppler measurements in echocardiography.
We trained models for the automated measurement of echocardiography parameters using data sets between 2011 and 2023 from Cedars-Sinai Medical Center (CSMC). The outputs of segmentation models were compared with sonographer measurements from temporal split data from CSMC and an external data set from Stanford Healthcare (SHC) to access accuracy and precision.
We used 877,983 echocardiographic measurements from 155,215 studies from CSMC to develop EchoNet-Measurements, an open-source deep learning model for echocardiographic annotation. The models demonstrated high accuracy when compared with sonographer measurements from held-out data from CSMC and an independent external validation data set from SHC. Measurements across all 9 B-mode and 9 Doppler measurements had high accuracy (mean coverage probability of 0.796 and 0.839 and mean relative difference of 0.120 and 0.096 on held-out test set from CSMC and external data set from SHC, respectively). When evaluated end-to-end on 2,103 temporally distinct studies at CSMC, EchoNet-Measurements had similar reasonable performance (mean coverage probability 0.803 and mean relative difference of 0.108). Performance was consistent across patient characteristics including age, sex, and atrial fibrillation, obesity status, and machine vendors.
EchoNet-Measurements achieves high accuracy in automated echocardiographic quantification and potential for assisting the clinicians in the echocardiography workflow. This open-source model provides the foundation for future developments in artificial intelligence applied to echocardiography.
准确测量超声心动图参数对于心血管疾病的诊断和随时间变化的跟踪至关重要;然而,手动评估需要耗费大量时间,且可能不准确。人工智能有潜力通过自动化超声心动图参数综合测量这一耗时任务来减轻临床医生的负担。
本研究的目的是开发并验证用于超声心动图中18项解剖学和多普勒测量自动测量的开源深度学习语义分割模型。
我们使用2011年至2023年来自雪松西奈医疗中心(CSMC)的数据集训练用于超声心动图参数自动测量的模型。将分割模型的输出与来自CSMC的时间分割数据以及斯坦福医疗保健(SHC)的外部数据集的超声检查人员测量结果进行比较,以评估准确性和精确性。
我们使用了来自CSMC的155,215项研究中的877,983次超声心动图测量数据来开发EchoNet-Measurements,这是一种用于超声心动图注释的开源深度学习模型。与来自CSMC的预留数据和来自SHC的独立外部验证数据集的超声检查人员测量结果相比,这些模型显示出高准确性。所有9项B模式和9项多普勒测量的测量结果都具有高准确性(在来自CSMC的预留测试集和来自SHC的外部数据集中,平均覆盖概率分别为0.796和0.839,平均相对差异分别为0.120和0.096)。当在CSMC的2,103项时间上不同的研究中进行端到端评估时,EchoNet-Measurements具有类似的合理性能(平均覆盖概率0.803,平均相对差异0.108)。性能在包括年龄、性别、心房颤动、肥胖状态和机器供应商在内的患者特征中保持一致。
EchoNet-Measurements在超声心动图自动量化方面实现了高准确性,并有可能在超声心动图工作流程中协助临床医生。这个开源模型为应用于超声心动图的人工智能未来发展奠定了基础。