Suppr超能文献

超声心动图测量的人工智能自动化

Artificial intelligence automation of echocardiographic measurements.

作者信息

Sahashi Yuki, Ieki Hirotaka, Yuan Victoria, Christensen Matthew, Vukadinovic Milos, Binder-Rodriguez Christina, Rhee Justin, Zou James Y, He Bryan, Cheng Paul, Ouyang David

机构信息

Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA.

Division of Cardiology, Department of Medicine, Stanford University, Palo Alto, CA.

出版信息

medRxiv. 2025 Mar 19:2025.03.18.25324215. doi: 10.1101/2025.03.18.25324215.

Abstract

BACKGROUND

Accurate measurement of echocardiographic parameters is crucial for the diagnosis of cardiovascular disease and tracking of change over time, however manual assessment is time-consuming and can be imprecise. Artificial intelligence (AI) has the potential to reduce clinician burden by automating the time-intensive task of comprehensive measurement of echocardiographic parameters.

METHODS

We developed and validated open-sourced deep learning semantic segmentation models for the automated measurement of 18 anatomic and Doppler measurements in echocardiography. The outputs of segmentation models were compared to sonographer measurements from two institutions to access accuracy and precision.

RESULTS

We utilized 877,983 echocardiographic measurements from 155,215 studies from Cedars-Sinai Medical Center (CSMC) to develop EchoNet-Measurements, an open-source deep learning model for echocardiographic annotation. The models demonstrated a good correlation when compared with sonographer measurements from held-out data from CSMC and an independent external validation dataset from Stanford Healthcare (SHC). Measurements across all nine B-mode and nine Doppler measurements had high accuracy (an overall R of 0.967 (0.965 - 0.970) in the held-out CSMC dataset and 0.987 (0.984 - 0.989) in the SHC dataset). When evaluated end-to-end on a temporally distinct 2,103 studies at CSMC, EchoNet-Measurements performed well an overall R2 of 0.981 (0.976 - 0.984). Performance was consistent across patient characteristics including sex and atrial fibrillation status.

CONCLUSION

EchoNet-Measurement achieves high accuracy in automated echocardiographic measurement that is comparable to expert sonographers. This open-source model provides the foundation for future developments in AI applied to echocardiography.

摘要

背景

准确测量超声心动图参数对于心血管疾病的诊断和随时间变化的跟踪至关重要,然而手动评估耗时且可能不准确。人工智能(AI)有潜力通过自动化超声心动图参数综合测量这一耗时任务来减轻临床医生的负担。

方法

我们开发并验证了用于超声心动图中18项解剖和多普勒测量自动测量的开源深度学习语义分割模型。将分割模型的输出与来自两个机构的超声检查人员的测量结果进行比较,以评估准确性和精确性。

结果

我们利用来自雪松西奈医疗中心(CSMC)155,215项研究的877,983次超声心动图测量结果来开发EchoNet-Measurements,这是一个用于超声心动图注释的开源深度学习模型。与来自CSMC的保留数据和斯坦福医疗保健(SHC)的独立外部验证数据集的超声检查人员测量结果相比,这些模型显示出良好的相关性。所有九项B模式和九项多普勒测量的测量结果都具有很高的准确性(在CSMC保留数据集中总体R为0.967(0.965 - 0.970),在SHC数据集中为0.987(0.984 - 0.989))。当在CSMC对2,103项时间上不同的研究进行端到端评估时,EchoNet-Measurements表现良好,总体R²为0.981(0.976 - 0.984)。性能在包括性别和房颤状态在内的患者特征中保持一致。

结论

EchoNet-Measurement在自动超声心动图测量中实现了与专家超声检查人员相当的高精度。这个开源模型为应用于超声心动图的人工智能未来发展奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a731/11957091/953e21e20b6a/nihpp-2025.03.18.25324215v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验