Nie Jin, Zhang Kai, Tan Zhaoyang, Wang Yanji, Li Jingde, Liu Guihua, Wu Lanlan
Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
J Colloid Interface Sci. 2025 Sep 4;702(Pt 2):138939. doi: 10.1016/j.jcis.2025.138939.
Enhancing anodic hydroxyl (OH) coverage and suppressing leaching of active metal sites are essential for developing efficient and durable alkaline oxygen evolution reaction (OER) electrocatalysts. Herein, we propose amorphous cerium oxide (CeO)-mediated amorphous/crystalline heterointerface engineering to enhance OH coverage and leaching resistance in CeO/Mo-NiS for high-performance OER. CeO with an oxyphilic surface facilitates OH adsorption, promoting in situ reconstruction of NiS into nickel hydroxyl oxide (NiOOH) with significantly enhanced OH coverage and thereby accelerating OER kinetics. Meanwhile, CeO-mediated amorphous/crystalline heterointerface modulation causes an upshift in the Ni 3d band center and strengthens the NiO covalent bond, inhibiting leaching of highly active Ni sites and improving catalyst stability. Consequently, the CeO/Mo-NiS catalyst exhibits exceptional OER activity with an ultralow overpotential of 140 mV at 10 mA cm. It also demonstrates efficient hydrogen evolution reaction (HER) performance, requiring only 56 mV overpotential at 10 mA cm. When integrated in an anion exchange membrane (AEM) water electrolyzer, the CeO/Mo-NiS-based system requires just 1.71 V to deliver 500 mA cm and maintains stable operation for 550 h. This CeO-mediated in situ reconstruction of amorphous/crystalline heterointerfaces enhances OH coverage and resists active-site leaching, advancing the design and mechanistic understanding of rare-earth-metal-reinforced alkaline OER electrocatalysts.
提高阳极羟基(OH)覆盖率并抑制活性金属位点的浸出对于开发高效耐用的碱性析氧反应(OER)电催化剂至关重要。在此,我们提出了非晶态氧化铈(CeO)介导的非晶态/晶态异质界面工程,以提高CeO/Mo-NiS中OH的覆盖率和抗浸出性,从而实现高性能的OER。具有亲氧表面的CeO促进OH吸附,促进NiS原位重构为氢氧化镍(NiOOH),显著提高OH覆盖率,从而加速OER动力学。同时,CeO介导的非晶态/晶态异质界面调制导致Ni 3d带中心上移并增强NiO共价键,抑制高活性Ni位点的浸出并提高催化剂稳定性。因此,CeO/Mo-NiS催化剂表现出优异的OER活性,在10 mA cm下超电势仅为140 mV。它还展示了高效的析氢反应(HER)性能,在10 mA cm下仅需56 mV的超电势。当集成到阴离子交换膜(AEM)水电解槽中时,基于CeO/Mo-NiS的系统仅需1.71 V即可提供500 mA cm,并保持550 h的稳定运行。这种CeO介导的非晶态/晶态异质界面原位重构提高了OH覆盖率并抵抗活性位点浸出,推动了稀土金属增强碱性OER电催化剂的设计和机理理解。