Suppr超能文献

用于检测锂离子电池中有毒热失控气体的Fe-X(X = C、P、S)原子对修饰的石墨相氮化碳单层:一项密度泛函理论研究

Fe-X (X=C, P, S) atom pair-decorated g-CN monolayers for sensing toxic thermal runaway gases in lithium-ion batteries: A DFT Study.

作者信息

Sun Chengcheng, Huang Haojie, Zhang Haihui, Yang Liang, Li Wenhui, Gan Lei, Xiong Huihui

机构信息

Jiangxi Provincial Key Laboratory of High-Performance Steel and Iron Alloy Materials, Jiangxi University of Science and Technology, Ganzhou, 34100, China; School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou, 34100, China.

School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou, 34100, China.

出版信息

Environ Res. 2025 Sep 5;286(Pt 1):122777. doi: 10.1016/j.envres.2025.122777.

Abstract

The thermal runaway of lithium-ion batteries (LIBs) releases a mixture of toxic and explosive gases, posing severe safety risks. High-performance sensors are critical for the early detection of these thermal runaway gases (TRGs) to prevent accident escalation. Herein, we systematically investigate Fe-X (X = C, P, S) atomic pair-modified g-CN (FCN, FPN, FSN) monolayers as potential sensing materials for six TRGs (CO, CO, H, CH, CH, and CH) using first-principles calculations. The results demonstrate that the Fe-X pairs can be stably anchored onto the g-CN monolayer, and this co-doping strategy significantly enhances its adsorption and sensing capabilities. Furthermore, the key TRGs such as CO, CH, and CH undergo strong chemisorption, inducing substantial changes in the electronic properties of the modified monolayers and signifying excellent sensing potential. Notably, the materials exhibit tailored functionalities; for instance, FCN and FSN are identified as promising candidates for reusable, room-temperature (298 K) H detection due to their fast desorption performance. This study underscores that atomic pair co-doping is a powerful approach to design g-CN-based materials with high sensitivity and selectivity, offering a theoretical foundation for the development of advanced sensors for LIBs safety monitoring.

摘要

锂离子电池(LIBs)的热失控会释放出有毒和易爆气体的混合物,带来严重的安全风险。高性能传感器对于早期检测这些热失控气体(TRGs)以防止事故升级至关重要。在此,我们使用第一性原理计算系统地研究了Fe-X(X = C、P、S)原子对修饰的g-CN(FCN、FPN、FSN)单层作为六种TRGs(CO、CO、H、CH、CH和CH)的潜在传感材料。结果表明,Fe-X对可以稳定地锚定在g-CN单层上,这种共掺杂策略显著增强了其吸附和传感能力。此外,关键的TRGs如CO、CH和CH会发生强烈的化学吸附,导致修饰单层的电子性质发生显著变化,显示出优异的传感潜力。值得注意的是,这些材料具有定制的功能;例如,FCN和FSN因其快速解吸性能被确定为可重复使用的室温(298 K)H检测的有前途的候选材料。这项研究强调,原子对共掺杂是设计具有高灵敏度和选择性的g-CN基材料的有效方法,为开发用于LIBs安全监测的先进传感器提供了理论基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验