Guo Jun-Chen, Chai Cong-Zheng, Wang Ya-Hui, Zhao Yao, Xin Sen, Zhang Ying, Guo Yu-Guo, Bai Chunli
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2501549122. doi: 10.1073/pnas.2501549122. Epub 2025 Jul 14.
Lithium (Li) metal batteries offer high energy density but face significant safety challenges due to gas evolution under thermal abuse conditions. At the anode, the reduction of organic carbonate-based electrolytes generates flammable gases (e.g., H, CH), while the poor thermal stability of the cathode results in the release of O, CO, and CO. The accumulation of these gases contributes to mechanical rupture, and their migration further exacerbates thermal runaway. To address these challenges, we propose a smart gas management strategy that constructs continuous flame-retardant interfaces (FRIs) by incorporating flame-retardant polymers (FRPs) into the cathode. Smart gas management is defined as the ability to suppress gas production, alter gas composition to reduce flammability, and mitigate internal pressure buildup, thereby preventing thermal runaway. The FRIs significantly enhance the thermal stability of the cathode by suppressing oxygen release and minimizing electrolyte oxidation caused by active oxygen species. Additionally, the FRP releases flame-retardant radicals that diffuse into the electrolyte, interrupting reactions that generate flammable gases at the anode. This dual-action mechanism reduces gas production and mitigates the risks associated with thermal runaway, forming the foundation of a smart gas management strategy. With this strategy, we demonstrate zero thermal runaway in a 0.58-Ah Li||NCM811 pouch cell with 100% state of charge under thermal abuse conditions. This approach is highly compatible with current manufacturing processes, offering a scalable solution for improving the safety of high-energy-density Li metal batteries. This work provides a promising pathway toward fire-safe Li metal batteries for electric vehicles and other energy storage applications.
锂(Li)金属电池具有高能量密度,但在热滥用条件下会因气体逸出而面临重大安全挑战。在阳极,基于有机碳酸盐的电解质的还原会产生可燃气体(如H、CH),而阴极较差的热稳定性会导致O、CO和CO的释放。这些气体的积累会导致机械破裂,它们的迁移会进一步加剧热失控。为应对这些挑战,我们提出了一种智能气体管理策略,即通过将阻燃聚合物(FRP)纳入阴极来构建连续的阻燃界面(FRI)。智能气体管理的定义是抑制气体产生、改变气体成分以降低可燃性以及减轻内部压力积聚的能力,从而防止热失控。FRI通过抑制氧气释放和最大限度地减少由活性氧物种引起的电解质氧化,显著提高了阴极的热稳定性。此外,FRP释放出扩散到电解质中的阻燃自由基,中断了在阳极产生可燃气体的反应。这种双重作用机制减少了气体产生并减轻了与热失控相关的风险,构成了智能气体管理策略的基础。通过这种策略,我们展示了在热滥用条件下,一个0.58安时的Li||NCM811软包电池在100%充电状态下实现零热失控。这种方法与当前的制造工艺高度兼容,为提高高能量密度锂金属电池的安全性提供了一种可扩展的解决方案。这项工作为电动汽车和其他储能应用的防火锂金属电池提供了一条有前景的途径。