Suppr超能文献

预测住院成人静脉血栓栓塞症:一个可实施的实时预后模型的开发与验证方案

Predicting venous thromboembolism among hospitalized adults: a protocol for development and validation of an implementable real-time prognostic model.

作者信息

Domenico Henry J, Tillman Benjamin F, Just Shari L, Ko Yeji, Mixon Amanda S, Weitkamp Asli, Schildcrout Jonathan S, Walsh Colin, Ortel Thomas, French Benjamin

机构信息

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.

Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Diagn Progn Res. 2025 Sep 8;9(1):19. doi: 10.1186/s41512-025-00205-8.

Abstract

BACKGROUND

Hospital-acquired venous thromboembolism (HA-VTE) is a leading cause of morbidity and mortality among hospitalized adults. Numerous prognostic models have been developed to identify those patients with elevated risk of HA-VTE. None, however, has met the necessary criteria to guide clinical decision-making. This study outlines a protocol for refining and validating a general-purpose prognostic model for HA-VTE, designed for real-time automation within the electronic health record (EHR) system.

METHODS

A retrospective cohort of 132,561 inpatient encounters (89,586 individual patients) at a large academic medical center will be collected, along with clinical and demographic data available as part of routine care. Data for temporal, geographic, and domain external validation cohorts will also be collected. Logistic regression will be used to predict occurrence of HA-VTE during an inpatient encounter. Variables considered for model inclusion will be based on prior demonstrated association with HA-VTE and their availability in both retrospective EHR data and routine clinical care. Least absolute shrinkage and selection operator (LASSO) with tenfold cross-validation will be used for initial variable selection. Variables selected by the LASSO procedure, along with those deemed necessary by clinicians, will be used in an unpenalized multivariable logistic regression model. Discrimination and calibration will be reported for the derivation and validation cohorts. Discrimination will be measured using Harrell's C statistic. Calibration will be measured using calibration intercept, calibration slope, Brier score, integrated calibration index, and visual examination of non-linear calibration curve. Model reporting will adhere to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines for clinical prediction models using machine learning methods (TRIPOD + AI).

DISCUSSION

We describe methods for developing, evaluating, and validating a prognostic model for HA-VTE using routinely collected EHR data. By combining best practices in statistical development and validation, knowledge engineering, and clinical domain knowledge, the resulting model should be well suited for real-time clinical implementation. Although this protocol describes our development of a model for HA-VTE, the general approach can be applied to other clinical outcomes.

摘要

背景

医院获得性静脉血栓栓塞症(HA-VTE)是住院成人发病和死亡的主要原因。已经开发了许多预后模型来识别那些发生HA-VTE风险升高的患者。然而,没有一个模型符合指导临床决策的必要标准。本研究概述了一个完善和验证HA-VTE通用预后模型的方案,该模型设计用于电子健康记录(EHR)系统中的实时自动化。

方法

将收集一家大型学术医疗中心132,561例住院病例(89,586名个体患者)的回顾性队列,以及作为常规护理一部分的临床和人口统计学数据。还将收集时间、地理和领域外部验证队列的数据。将使用逻辑回归来预测住院期间HA-VTE的发生。考虑纳入模型的变量将基于先前证明的与HA-VTE的关联以及它们在回顾性EHR数据和常规临床护理中的可用性。将使用具有十折交叉验证的最小绝对收缩和选择算子(LASSO)进行初始变量选择。通过LASSO程序选择的变量,以及临床医生认为必要的变量,将用于无惩罚多变量逻辑回归模型。将报告推导队列和验证队列的区分度和校准情况。区分度将使用Harrell's C统计量进行测量。校准将使用校准截距、校准斜率、Brier评分、综合校准指数以及非线性校准曲线的视觉检查进行测量。模型报告将遵循使用机器学习方法的临床预测模型的个体预后或诊断多变量预测模型的透明报告指南(TRIPOD + AI)。

讨论

我们描述了使用常规收集的EHR数据开发、评估和验证HA-VTE预后模型的方法。通过结合统计开发和验证、知识工程以及临床领域知识方面的最佳实践,所得模型应非常适合实时临床应用。尽管本方案描述了我们对HA-VTE模型的开发,但一般方法可应用于其他临床结局。

相似文献

本文引用的文献

2
A real-time prognostic model for venous thromboembolic events among hospitalized adults.住院成人静脉血栓栓塞事件的实时预后模型
Res Pract Thromb Haemost. 2024 May 6;8(4):102433. doi: 10.1016/j.rpth.2024.102433. eCollection 2024 May.
10
Reasons for the persistent incidence of venous thromboembolism.静脉血栓栓塞持续发生的原因。
Thromb Haemost. 2017 Jan 26;117(2):390-400. doi: 10.1160/TH16-07-0509. Epub 2016 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验