Gao Tianze, Li Hao, Yang Yongkang, Zhao Tianyuan, Chen Wei, Li Runmeng, Zhang Ruiyang, Deng Haoyuan, Li Jianwei, Ren Yiming, Yuan Zhiguo, Guo Quanyi, Liu Shuyun
School of Medicine, Nankai University, Tianjin 300071, China.
Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing 100853, China.
ACS Nano. 2025 Sep 16;19(36):32063-32081. doi: 10.1021/acsnano.4c16049. Epub 2025 Sep 7.
In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality. At present, the excessive inflammatory response after microfracture can chronically activate the nuclear factor-κB (NF-κB) pathway, increasing production of matrix-degrading enzymes like matrix metalloproteinases (MMPs) and aggrecanases, which in turn accelerate cartilage matrix degradation and worsen the injury. Herein, we develop a novel enzyme-responsive, self-assembling hydrogel composed of silk fibroin and an Aggrecanase-2 (ADAMTS5)-sensitive peptide. This hydrogel targets ADAMTS5, a key enzyme overexpressed in the postinjury inflammatory microenvironment, enabling dynamic drug release based on inflammation levels. We then incorporated miRNA-17-3p (miR-17-3p) into lipid nanoparticles and loaded this miRNA delivery system into the hydrogel to inhibit NF-κB signaling upstream of ADAMTS5. This strategy created a targeted positive regulatory feedback mechanism, fundamentally solving the problem of modulating the ADAMTS5-related inflammasome pathway while boosting chondrocyte expansion in the early stage. In vivo studies in microfracture-mediated cartilage repair models demonstrated that the ADAMTS5-responsive hydrogel with miR-17-3p achieves superior repair outcomes. This research offers a logic-based and multistaged strategy for chronologically regulating the inflammatory microenvironment, which has research value and practical application prospects in the treatment of AC injuries.
原位关节软骨(AC)再生是一个精心协调的过程。微骨折一直是AC修复中应用最广泛的临床方法,但它面临着诸如基质降解、生成以及在局部炎症微环境中的重塑等挑战。到目前为止,建立一个协调这些细胞事件的多阶段调控框架仍然是一个挑战,特别是在微骨折介导的AC修复微环境中的免疫反应和软骨细胞增殖,这对于提高AC再生质量至关重要。目前,微骨折后过度的炎症反应可长期激活核因子-κB(NF-κB)通路,增加基质金属蛋白酶(MMPs)和聚集蛋白聚糖酶等基质降解酶的产生,进而加速软骨基质降解并使损伤恶化。在此,我们开发了一种由丝素蛋白和聚集蛋白聚糖酶-2(ADAMTS5)敏感肽组成的新型酶响应性自组装水凝胶。这种水凝胶靶向ADAMTS5,一种在损伤后炎症微环境中过表达的关键酶,能够根据炎症水平实现动态药物释放。然后,我们将miRNA-17-3p(miR-17-3p)掺入脂质纳米颗粒中,并将这种miRNA递送系统加载到水凝胶中,以抑制ADAMTS5上游的NF-κB信号传导。该策略创建了一个靶向性的正调控反馈机制,从根本上解决了在促进早期软骨细胞扩增的同时调节与ADAMTS5相关的炎性小体途径的问题。在微骨折介导的软骨修复模型中的体内研究表明,含有miR-17-3p的ADAMTS5响应性水凝胶取得了优异的修复效果。这项研究为按时间顺序调节炎症微环境提供了一种基于逻辑的多阶段策略,在AC损伤治疗中具有研究价值和实际应用前景。