Shen Cong-Yi, Zhou Qi-Rong, Wu Xiang, Han Xin-Yu, Zhang Qin, Chen Xiao, Lai Yu-Xiao, Bai Long, Jing Ying-Ying, Wang Jian-Hua, Wang Cheng-Long, Geng Zhen, Su Jia-Can
Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
MedEng-X Institutes, Shanghai University, Shanghai, 200444, China.
Mil Med Res. 2025 Jul 28;12(1):39. doi: 10.1186/s40779-025-00625-z.
Cartilage repair remains a considerable challenge in regenerative medicine. Despite extensive research on biomaterials for cartilage repair in recent years, issues such as prolonged repair cycles and suboptimal outcomes persist. Organoids, miniature three-dimensional (3D) tissue structures derived from the directed differentiation of stem or progenitor cells, mimic the structure and function of natural organs. Therefore, the construction of cartilage organoids (COs) holds great promise as a novel strategy for cartilage repair.
This study employed a digital light processing system to perform 3D bioprinting of a DNA-silk fibroin (DNA-SF) hydrogel sustained-release system (DSRGT) with bone-marrow mesenchymal stem cells (BMSCs) to construct millimeter-scale cerebral organoids. COs at different developmental stages were characterized, and the COs with the best cartilage phenotype were selected for in vivo cartilage repair in a rat articular cartilage defect model.
This study developed a DSRGT by covalently grafting glucosamine (which promotes cartilage matrix synthesis) and TD-198946 (which promotes chondrogenic differentiation) onto a hydrogel using acrylic acid-polyethylene glycol-N-hydroxysuccinimide (AC-PEG-NHS). In vitro, 4-week COs exhibited higher SRY-box transcription factor 9 (SOX9), type II collagen (Col II), and aggrecan (ACAN) expression and lower type I collagen (Col I) and type X collagen (Col X) expression, indicating that 4 weeks is the optimal culture duration for hyaline cartilage development. In vivo, the mitogen-activated protein kinase (MAPK) signaling pathway was upregulated in 4-week COs, enabling cartilage repair within 8 weeks. Transcriptomic analysis revealed that cartilage regenerated with 4-week COs presented gene expression profiles resembling those of healthy cartilage.
This study employs DSRGT to construct COs, providing an innovative strategy for the regeneration of cartilage defects.
软骨修复仍是再生医学中一项重大挑战。尽管近年来对用于软骨修复的生物材料进行了广泛研究,但诸如修复周期延长和效果欠佳等问题依然存在。类器官是由干细胞或祖细胞定向分化产生的微型三维(3D)组织结构,可模拟天然器官的结构和功能。因此,构建软骨类器官(COs)作为一种新型软骨修复策略具有巨大潜力。
本研究采用数字光处理系统,将骨髓间充质干细胞(BMSCs)与DNA-丝素蛋白(DNA-SF)水凝胶缓释系统(DSRGT)进行3D生物打印,以构建毫米级脑类器官。对不同发育阶段的COs进行表征,并选择具有最佳软骨表型的COs用于大鼠关节软骨缺损模型的体内软骨修复。
本研究通过使用丙烯酸-聚乙二醇-N-羟基琥珀酰亚胺(AC-PEG-NHS)将促进软骨基质合成的氨基葡萄糖和促进软骨分化的TD-198946共价接枝到水凝胶上,开发了一种DSRGT。在体外,4周龄的COs表现出更高的性别决定区Y盒转录因子9(SOX9)、II型胶原蛋白(Col II)和聚集蛋白聚糖(ACAN)表达,以及更低的I型胶原蛋白(Col I)和X型胶原蛋白(Col X)表达,表明4周是透明软骨发育的最佳培养时间。在体内,4周龄的COs中丝裂原活化蛋白激酶(MAPK)信号通路被上调,从而在8周内实现软骨修复。转录组分析显示,用4周龄的COs再生的软骨呈现出与健康软骨相似的基因表达谱。
本研究采用DSRGT构建COs,为软骨缺损的再生提供了一种创新策略。