Suppr超能文献

核磁共振衍生的水力传导率与各种水力测试方法的比较。

Comparison of NMR-Derived Hydraulic Conductivity with Various Hydraulic Testing Methods.

作者信息

Wang Chenxi, Steelman Colby M, Ning Zeren, Walsh David O, Illman Walter A

机构信息

Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Vista Clara Inc., 12201 Cyrus Way, Suite 104, Mukilteo, WA, 98275.

出版信息

Ground Water. 2025 Sep-Oct;63(5):713-724. doi: 10.1111/gwat.70016. Epub 2025 Sep 7.

Abstract

Borehole nuclear magnetic resonance (NMR) can be used to estimate the hydraulic conductivity (K) of unconsolidated materials. Various petrophysical models have been developed to predict K based on NMR response, with considerable efforts on optimizing site-specific constants. In this study, we assessed the utility of NMR logs to estimate K within highly heterogeneous glaciofluvial deposits by comparing them with K measurements from three types of co-located hydraulic testing methods, including permeameter, multi-level slug, and direct-push hydraulic profiling tool (HPT) logging tests. Four NMR models, including Schlumberger-Doll Research (SDR), Seevers, Sum-of-Echoes (SOE), and Kozeny-Godefroy (KGM), were applied to construct K profiles at four locations with model constants optimized using permeameter-based K. Model constants suitable for glaciofluvial deposits were provided. Results showed that NMR logging can provide reliable K estimates for interbedded layers of sand/gravel, silt, and clay. Through cross-hole comparison of NMR-derived K profiles, the trends and magnitudes of K for aquifers/aquitards were readily mapped. Quantitatively, the NMR-derived K coincided with hydraulic-testing K, with optimal model fits within one order of magnitude. We noticed that (1) Seevers performed similarly but no better than SDR in predicting permeameter and slug testing measurements; (2) SOE yielded slightly better predictions than SDR; (3) the removal of porosity in SDR did not deteriorate its prediction, and the optimized SDR constant resembled the literature-based values for glacial deposits; and (4) KGM yielded the optimal fits with slug-based K, demonstrating its reliable performance. Lastly, we made recommendations on selecting suitable petrophysical models.

摘要

钻孔核磁共振(NMR)可用于估算松散沉积物的水力传导率(K)。人们已开发出各种岩石物理模型,用于根据核磁共振响应预测K值,并在优化特定场地常数方面付出了巨大努力。在本研究中,我们通过将核磁共振测井数据与三种同位置水力测试方法(包括渗透仪、多级活塞和直接推压式水力剖面工具(HPT)测井测试)测得的K值进行比较,评估了核磁共振测井在高度非均质冰水河流沉积物中估算K值的效用。应用了四种核磁共振模型,包括斯伦贝谢-多尔研究公司(SDR)模型、西弗斯模型、回波总和(SOE)模型和科曾尼-戈德弗罗伊(KGM)模型,在四个地点构建K值剖面,并使用基于渗透仪的K值对模型常数进行优化。给出了适用于冰水河流沉积物的模型常数。结果表明,核磁共振测井可为砂/砾石、粉砂和粘土互层提供可靠的K值估算。通过对核磁共振得出的K值剖面进行跨孔比较,含水层/隔水层的K值趋势和大小很容易绘制出来。定量分析表明,核磁共振得出的K值与水力测试得出的K值相符,最佳模型拟合在一个数量级内。我们注意到:(1)在预测渗透仪和活塞测试测量值方面,西弗斯模型的表现与SDR模型相似,但并不比SDR模型更好;(2)SOE模型的预测结果略优于SDR模型;(3)在SDR模型中去除孔隙度并不会使其预测效果变差,优化后的SDR常数与基于文献的冰川沉积物值相似;(4)KGM模型与基于活塞的K值拟合效果最佳,证明了其可靠的性能。最后,我们对选择合适的岩石物理模型提出了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13ad/12435153/84118fe668c4/GWAT-63-713-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验