Suppr超能文献

关于使用生成模型对条件性脑图像和成像测量进行采样的调查。

Survey on sampling conditioned brain images and imaging measures with generative models.

作者信息

Cheong Sehyoung, Lee Hoseok, Kim Won Hwa

机构信息

Computer Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro. Nam-Gu, Pohang, Gyeongbuk 37673 Korea.

Graduate School of Artificial Intelligence, Pohang University of Science and Technology, 77 Cheongam-Ro. Nam-Gu, Pohang, Gyeongbuk 37673 Korea.

出版信息

Biomed Eng Lett. 2025 Jul 12;15(5):831-843. doi: 10.1007/s13534-025-00487-3. eCollection 2025 Sep.

Abstract

Generative models have become innovative tools across various domains, including neuroscience, where they enable the synthesis of realistic brain imaging data that captures complex anatomical and functional patterns. These models, such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and diffusion models, leverage deep learning to generate high-quality brain images while maintaining biological and clinical relevance. These models address critical challenges in brain imaging, e.g., the high cost and time required for data acquisition and the frequent imbalance in datasets, particularly for rare diseases or specific population groups. By conditioning the generative process on variables such as age, sex, clinical phenotypes, or genetic factors, these models enhance dataset diversity and provide opportunities to study underrepresented scenarios, model disease progression, and perform controlled experiments that are otherwise infeasible. Additionally, synthetic data generated by these models offer a potential solution to data privacy concerns, as they provide realistic non-identifiable data. As generative models continue to develop, they hold significant potential to substantially advance neuroscience by augmenting datasets, improving diagnostic accuracy, and accelerating the development of personalized treatments. This paper provides a comprehensive overview of the advancements in generative modeling techniques and their applications in brain imaging, with a particular emphasis on conditional generative methods. By categorizing existing approaches, addressing key challenges, and highlighting future directions, this paper aims to advance the integration of conditional generative models into neuroscience research and clinical workflows.

摘要

生成模型已成为跨多个领域的创新工具,包括神经科学领域。在神经科学中,它们能够合成逼真的脑成像数据,捕捉复杂的解剖和功能模式。这些模型,如变分自编码器(VAE)、生成对抗网络(GAN)和扩散模型,利用深度学习来生成高质量的脑图像,同时保持生物学和临床相关性。这些模型解决了脑成像中的关键挑战,例如数据采集所需的高成本和时间,以及数据集中频繁出现的不平衡问题,特别是对于罕见疾病或特定人群组。通过将生成过程基于年龄、性别、临床表型或遗传因素等变量进行条件设定,这些模型增强了数据集的多样性,并提供了研究代表性不足的情况、模拟疾病进展以及进行其他情况下不可行的对照实验的机会。此外,这些模型生成的合成数据为数据隐私问题提供了潜在的解决方案,因为它们提供了逼真的不可识别数据。随着生成模型的不断发展,它们在扩充数据集、提高诊断准确性以及加速个性化治疗的开发方面具有显著潜力,能够极大地推动神经科学的发展。本文全面概述了生成建模技术的进展及其在脑成像中的应用,特别强调了条件生成方法。通过对现有方法进行分类、解决关键挑战并突出未来方向,本文旨在推动条件生成模型融入神经科学研究和临床工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ce3/12411339/d8d67e0f3842/13534_2025_487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验