Suppr超能文献

基于目标的脑 MRI 配准

Goal-specific brain MRI harmonization.

机构信息

Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore.

Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

出版信息

Neuroimage. 2022 Nov;263:119570. doi: 10.1016/j.neuroimage.2022.119570. Epub 2022 Aug 17.

Abstract

There is significant interest in pooling magnetic resonance image (MRI) data from multiple datasets to enable mega-analysis. Harmonization is typically performed to reduce heterogeneity when pooling MRI data across datasets. Most MRI harmonization algorithms do not explicitly consider downstream application performance during harmonization. However, the choice of downstream application might influence what might be considered as study-specific confounds. Therefore, ignoring downstream applications during harmonization might potentially limit downstream performance. Here we propose a goal-specific harmonization framework that utilizes downstream application performance to regularize the harmonization procedure. Our framework can be integrated with a wide variety of harmonization models based on deep neural networks, such as the recently proposed conditional variational autoencoder (cVAE) harmonization model. Three datasets from three different continents with a total of 2787 participants and 10,085 anatomical T1 scans were used for evaluation. We found that cVAE removed more dataset differences than the widely used ComBat model, but at the expense of removing desirable biological information as measured by downstream prediction of mini mental state examination (MMSE) scores and clinical diagnoses. On the other hand, our goal-specific cVAE (gcVAE) was able to remove as much dataset differences as cVAE, while improving downstream cross-sectional prediction of MMSE scores and clinical diagnoses.

摘要

人们对从多个数据集汇集磁共振图像 (MRI) 数据以进行大型分析非常感兴趣。通常在跨数据集汇集 MRI 数据时进行协调以减少异质性。大多数 MRI 协调算法在协调期间并没有明确考虑下游应用程序的性能。然而,下游应用程序的选择可能会影响被认为是特定于研究的混杂因素的内容。因此,在协调期间忽略下游应用程序可能会潜在地限制下游性能。在这里,我们提出了一个特定于目标的协调框架,该框架利用下游应用程序的性能来正则化协调过程。我们的框架可以与基于深度神经网络的各种协调模型集成,例如最近提出的条件变分自动编码器 (cVAE) 协调模型。使用来自三个不同大陆的三个数据集,共有 2787 名参与者和 10085 个解剖 T1 扫描进行了评估。我们发现,cVAE 比广泛使用的 ComBat 模型去除了更多的数据集差异,但代价是去除了有价值的生物学信息,如通过对迷你精神状态检查 (MMSE) 评分和临床诊断的下游预测来衡量。另一方面,我们特定于目标的 cVAE (gcVAE) 能够像 cVAE 一样去除那么多的数据集差异,同时改善 MMSE 评分和临床诊断的横截面下游预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验