Suppr超能文献

心电图-图神经网络:基于图卷积网络的高级心律失常分类

ECG-GraphNet: Advanced arrhythmia classification based on graph convolutional networks.

作者信息

Lee Myeonghun, Lim Jiwoo, Kim JinKook

机构信息

HUINNO Co., Ltd., Seoul, Republic of Korea.

School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea.

出版信息

Heart Rhythm O2. 2025 May 19;6(8):1199-1211. doi: 10.1016/j.hroo.2025.05.012. eCollection 2025 Aug.

Abstract

BACKGROUND

Deep learning has significantly improved medical diagnostics, particularly in electrocardiogram (ECG) analysis, yet accurate classification of arrhythmias remains challenging.

OBJECTIVE

We propose Electrocardiogram Graph Convolutional Network (ECG-GraphNet), a graph convolutional network designed to classify arrhythmias into 3 types: normal (N), supraventricular ectopic (S), and ventricular ectopic (V) beats.

METHODS

ECG-GraphNet utilizes a novel graph representation of ECG data in which the P wave, QRS complex, and T wave are modeled as individual nodes. A unique QRS-centered weighted average pooling method is employed to enhance beat-specific feature extraction. We systematically explored various aspects including node features, edge definitions, a data augmentation method, and architecture configuration to determine the optimal model design. Experiments were conducted on 10-second ECG recordings from 328 patients using a single-lead device.

RESULTS

The optimized ECG-GraphNet achieved a Macro F1 score of 88.61% in 5-fold cross-validation. Scalability experiments further demonstrated its robustness, with Macro F1 scores of 85.21% and 87.03% across diverse ECG patterns and sizes.

CONCLUSION

Our novel approach and comprehensive analysis underscore the potential advantages of ECG-GraphNet in clinical diagnosis and monitoring.

摘要

背景

深度学习显著改善了医学诊断,尤其是在心电图(ECG)分析方面,然而心律失常的准确分类仍然具有挑战性。

目的

我们提出了心电图图卷积网络(ECG-GraphNet),这是一种图卷积网络,旨在将心律失常分为三种类型:正常(N)、室上性异位(S)和室性异位(V)搏动。

方法

ECG-GraphNet利用一种新颖的心电图数据图表示,其中P波、QRS波群和T波被建模为单独的节点。采用独特的以QRS为中心的加权平均池化方法来增强特定搏动的特征提取。我们系统地探索了各个方面,包括节点特征、边的定义、数据增强方法和架构配置,以确定最佳模型设计。使用单导联设备对328例患者的10秒心电图记录进行了实验。

结果

优化后的ECG-GraphNet在5折交叉验证中实现了88.61%的宏F1分数。扩展性实验进一步证明了其稳健性,在不同的心电图模式和大小下,宏F1分数分别为85.21%和87.03%。

结论

我们的新方法和全面分析强调了ECG-GraphNet在临床诊断和监测中的潜在优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c5e/12411959/ed4de58c3ce9/gr1.jpg

相似文献

1
ECG-GraphNet: Advanced arrhythmia classification based on graph convolutional networks.
Heart Rhythm O2. 2025 May 19;6(8):1199-1211. doi: 10.1016/j.hroo.2025.05.012. eCollection 2025 Aug.
5
Efficient sleep apnea detection using single-lead ECG: A CNN-Transformer-LSTM approach.
Comput Biol Med. 2025 Sep;196(Pt A):110655. doi: 10.1016/j.compbiomed.2025.110655. Epub 2025 Jul 3.
6
A hybrid approach for machine learning based beat classification of ECG using different digital differentiators and DTCWT.
Comput Biol Med. 2025 Aug;194:110426. doi: 10.1016/j.compbiomed.2025.110426. Epub 2025 Jun 10.
7
Comparing ECG Lead Subsets for Heart Arrhythmia/ECG Pattern Classification: Convolutional Neural Networks and Random Forest.
CJC Open. 2024 Nov 8;7(2):176-186. doi: 10.1016/j.cjco.2024.10.012. eCollection 2025 Feb.
8
Optimizing beat-wise input for arrhythmia detection using 1-D convolutional neural networks: A real-world ECG study.
Comput Methods Programs Biomed. 2025 Sep;269:108898. doi: 10.1016/j.cmpb.2025.108898. Epub 2025 Jun 18.
9
TAC-ECG: A task-adaptive classification method for electrocardiogram based on cross-modal contrastive learning and low-rank convolutional adapter.
Comput Methods Programs Biomed. 2025 Oct;270:108918. doi: 10.1016/j.cmpb.2025.108918. Epub 2025 Jul 5.
10
BlendNet: a blending-based convolutional neural network for effective deep learning of electrocardiogram signals.
Front Artif Intell. 2025 Aug 22;8:1625637. doi: 10.3389/frai.2025.1625637. eCollection 2025.

本文引用的文献

1
A graph-based cardiac arrhythmia classification methodology using one-lead ECG recordings.
Intell Syst Appl. 2024 Jun;22. doi: 10.1016/j.iswa.2024.200385. Epub 2024 May 5.
2
Deep Representation Learning With Sample Generation and Augmented Attention Module for Imbalanced ECG Classification.
IEEE J Biomed Health Inform. 2024 May;28(5):2461-2472. doi: 10.1109/JBHI.2023.3325540. Epub 2024 May 6.
3
Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017-2023.
Front Physiol. 2023 Sep 15;14:1246746. doi: 10.3389/fphys.2023.1246746. eCollection 2023.
5
Artificial intelligence-enabled electrocardiographic screening for left ventricular systolic dysfunction and mortality risk prediction.
Front Cardiovasc Med. 2023 Mar 3;10:1070641. doi: 10.3389/fcvm.2023.1070641. eCollection 2023.
6
ECG signal feature extraction trends in methods and applications.
Biomed Eng Online. 2023 Mar 8;22(1):22. doi: 10.1186/s12938-023-01075-1.
7
A transformer-based deep neural network for arrhythmia detection using continuous ECG signals.
Comput Biol Med. 2022 May;144:105325. doi: 10.1016/j.compbiomed.2022.105325. Epub 2022 Feb 24.
8
Inter-patient arrhythmia classification with improved deep residual convolutional neural network.
Comput Methods Programs Biomed. 2022 Feb;214:106582. doi: 10.1016/j.cmpb.2021.106582. Epub 2021 Dec 12.
9
ECG-based machine-learning algorithms for heartbeat classification.
Sci Rep. 2021 Sep 21;11(1):18738. doi: 10.1038/s41598-021-97118-5.
10
Constrained transformer network for ECG signal processing and arrhythmia classification.
BMC Med Inform Decis Mak. 2021 Jun 9;21(1):184. doi: 10.1186/s12911-021-01546-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验