EPMoghaddam Dorsa, Muguli Ananya, Razavi Mehdi, Aazhang Behnaam
Department of Electrical and Computer Engineering, Rice University, TX, United States of America.
Department of Cardiology, Texas Heart Institute, TX, United States of America.
Intell Syst Appl. 2024 Jun;22. doi: 10.1016/j.iswa.2024.200385. Epub 2024 May 5.
In this study, we present a novel graph-based methodology for an accurate classification of cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach employs the visibility graph technique to generate graphs from time signals. Subsequently, informative features are extracted from each graph and then fed into classifiers to match the input ECG signal with the appropriate target arrhythmia class. The six target classes in this study are normal (N), left bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular contraction (PVC), atrial premature contraction (A), and fusion (F) beats. Three classification models were explored, including graph convolutional neural network (GCN), multi-layer perceptron (MLP), and random forest (RF). ECG recordings from the MIT-BIH arrhythmia database were utilized to train and evaluate these classifiers. The results indicate that the multi-layer perceptron model attains the highest performance, showcasing an average accuracy of 99.02%. Following closely, the random forest achieves a strong performance as well, with an accuracy of 98.94% while providing critical intuitions.
在本研究中,我们提出了一种新颖的基于图的方法,用于使用单导联心电图(ECG)对心律失常疾病进行准确分类。所提出的方法采用可见性图技术从时间信号生成图。随后,从每个图中提取信息特征,然后将其输入到分类器中,以使输入的ECG信号与适当的目标心律失常类别相匹配。本研究中的六个目标类别为正常(N)、左束支传导阻滞(LBBB)、右束支传导阻滞(RBBB)、室性早搏(PVC)、房性早搏(A)和融合(F)搏动。探索了三种分类模型,包括图卷积神经网络(GCN)、多层感知器(MLP)和随机森林(RF)。利用麻省理工学院-贝斯以色列女执事医疗中心心律失常数据库中的ECG记录来训练和评估这些分类器。结果表明,多层感知器模型表现出最高的性能,平均准确率达到99.02%。紧随其后的是随机森林,其准确率为98.94%,也表现出强劲的性能,同时还提供了关键的直观信息。