Suppr超能文献

一种使用单导联心电图记录的基于图形的心律失常分类方法。

A graph-based cardiac arrhythmia classification methodology using one-lead ECG recordings.

作者信息

EPMoghaddam Dorsa, Muguli Ananya, Razavi Mehdi, Aazhang Behnaam

机构信息

Department of Electrical and Computer Engineering, Rice University, TX, United States of America.

Department of Cardiology, Texas Heart Institute, TX, United States of America.

出版信息

Intell Syst Appl. 2024 Jun;22. doi: 10.1016/j.iswa.2024.200385. Epub 2024 May 5.

Abstract

In this study, we present a novel graph-based methodology for an accurate classification of cardiac arrhythmia diseases using a single-lead electrocardiogram (ECG). The proposed approach employs the visibility graph technique to generate graphs from time signals. Subsequently, informative features are extracted from each graph and then fed into classifiers to match the input ECG signal with the appropriate target arrhythmia class. The six target classes in this study are normal (N), left bundle branch block (LBBB), right bundle branch block (RBBB), premature ventricular contraction (PVC), atrial premature contraction (A), and fusion (F) beats. Three classification models were explored, including graph convolutional neural network (GCN), multi-layer perceptron (MLP), and random forest (RF). ECG recordings from the MIT-BIH arrhythmia database were utilized to train and evaluate these classifiers. The results indicate that the multi-layer perceptron model attains the highest performance, showcasing an average accuracy of 99.02%. Following closely, the random forest achieves a strong performance as well, with an accuracy of 98.94% while providing critical intuitions.

摘要

在本研究中,我们提出了一种新颖的基于图的方法,用于使用单导联心电图(ECG)对心律失常疾病进行准确分类。所提出的方法采用可见性图技术从时间信号生成图。随后,从每个图中提取信息特征,然后将其输入到分类器中,以使输入的ECG信号与适当的目标心律失常类别相匹配。本研究中的六个目标类别为正常(N)、左束支传导阻滞(LBBB)、右束支传导阻滞(RBBB)、室性早搏(PVC)、房性早搏(A)和融合(F)搏动。探索了三种分类模型,包括图卷积神经网络(GCN)、多层感知器(MLP)和随机森林(RF)。利用麻省理工学院-贝斯以色列女执事医疗中心心律失常数据库中的ECG记录来训练和评估这些分类器。结果表明,多层感知器模型表现出最高的性能,平均准确率达到99.02%。紧随其后的是随机森林,其准确率为98.94%,也表现出强劲的性能,同时还提供了关键的直观信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/707e/11351913/6c760ac58f83/nihms-2016619-f0001.jpg

相似文献

1
A graph-based cardiac arrhythmia classification methodology using one-lead ECG recordings.
Intell Syst Appl. 2024 Jun;22. doi: 10.1016/j.iswa.2024.200385. Epub 2024 May 5.
3
Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features.
Australas Phys Eng Sci Med. 2019 Mar;42(1):149-157. doi: 10.1007/s13246-019-00722-z. Epub 2019 Jan 14.
5
Ensemble classifier fostered detection of arrhythmia using ECG data.
Med Biol Eng Comput. 2023 Sep;61(9):2453-2466. doi: 10.1007/s11517-023-02839-6. Epub 2023 May 5.
6
An intelligent learning approach for improving ECG signal classification and arrhythmia analysis.
Artif Intell Med. 2020 Mar;103:101788. doi: 10.1016/j.artmed.2019.101788. Epub 2019 Dec 31.
7
8
A cascaded classifier for multi-lead ECG based on feature fusion.
Comput Methods Programs Biomed. 2019 Sep;178:135-143. doi: 10.1016/j.cmpb.2019.06.021. Epub 2019 Jun 20.
10
Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.
Comput Biol Med. 2018 Nov 1;102:278-287. doi: 10.1016/j.compbiomed.2018.06.002. Epub 2018 Jun 5.

引用本文的文献

1
ECG-GraphNet: Advanced arrhythmia classification based on graph convolutional networks.
Heart Rhythm O2. 2025 May 19;6(8):1199-1211. doi: 10.1016/j.hroo.2025.05.012. eCollection 2025 Aug.

本文引用的文献

1
WavelNet: A novel convolutional neural network architecture for arrhythmia classification from electrocardiograms.
Comput Methods Programs Biomed. 2023 Apr;231:107375. doi: 10.1016/j.cmpb.2023.107375. Epub 2023 Jan 25.
2
Fuzz-ClustNet: Coupled fuzzy clustering and deep neural networks for Arrhythmia detection from ECG signals.
Comput Biol Med. 2023 Feb;153:106511. doi: 10.1016/j.compbiomed.2022.106511. Epub 2023 Jan 4.
3
A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification.
Bioengineering (Basel). 2022 Apr 2;9(4):152. doi: 10.3390/bioengineering9040152.
4
Epileptic seizure prediction using spectral width of the covariance matrix.
J Neural Eng. 2022 Apr 5;19(2). doi: 10.1088/1741-2552/ac6063.
5
O-WCNN: an optimized integration of spatial and spectral feature map for arrhythmia classification.
Complex Intell Systems. 2023;9(3):2685-2698. doi: 10.1007/s40747-021-00371-4. Epub 2021 Apr 26.
6
Recurrence Plot-Based Approach for Cardiac Arrhythmia Classification Using Inception-ResNet-v2.
Front Physiol. 2021 May 17;12:648950. doi: 10.3389/fphys.2021.648950. eCollection 2021.
7
A Study on Arrhythmia via ECG Signal Classification Using the Convolutional Neural Network.
Front Comput Neurosci. 2021 Jan 5;14:564015. doi: 10.3389/fncom.2020.564015. eCollection 2020.
8
Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network.
Comput Methods Programs Biomed. 2020 Nov;196:105607. doi: 10.1016/j.cmpb.2020.105607. Epub 2020 Jun 18.
9
Non-Standardized Patch-Based ECG Lead Together With Deep Learning Based Algorithm for Automatic Screening of Atrial Fibrillation.
IEEE J Biomed Health Inform. 2020 Jun;24(6):1569-1578. doi: 10.1109/JBHI.2020.2980454. Epub 2020 Mar 13.
10
Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.
Comput Biol Med. 2018 Nov 1;102:278-287. doi: 10.1016/j.compbiomed.2018.06.002. Epub 2018 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验