Suppr超能文献

用于预测cN0期甲状腺乳头状癌高容量淋巴结转移的多模态超声与临床病理模型

Multimodal ultrasonographic and clinicopathological model for predicting high-volume lymph node metastasis in cN0 papillary thyroid carcinoma.

作者信息

Qian Jiwen, Zhang Zheng, Chen Yanwei, Zhao Shuangshuang, Li Wenjun, Bao Jiayan, Zhao Huajiao, Cai Yun, Chen Baoding

机构信息

Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, China.

出版信息

Front Endocrinol (Lausanne). 2025 Aug 21;16:1613672. doi: 10.3389/fendo.2025.1613672. eCollection 2025.

Abstract

BACKGROUND

Given the challenge in preoperative diagnosis of high-volume lymph node metastasis (HVLNM) in clinical practice, we constructed and externally validated a comprehensive predictive model that integrated conventional ultrasound characteristics, contrast-enhanced ultrasound (CEUS) parameters, BRAFmutation, and clinicopathological data for HVLNM in clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC).

METHODS

Totally, 126 clinically lymph node-negative (cN0) PTC patients who underwent subtotal or total thyroidectomy and accompanied with prophylactic cervical lymph node dissection between December 2022 and December 2024 were enrolled in this retrospective study, and an additional 47 cN0 PTC patients included for the external validation cohort. Univariate and multivariate analysis were performed to identify the independent risk factors for HVLNM, and a binary logistic regression equation and relevant nomogram was constructed to predict the risk about HVLNM. The model underwent internal validation using ten-fold cross-validation and further externally validated in an independent external cohort. Clinical practicality of the nomogram model was assessed by the area under the curve (AUC), calibration curve, and decision curve analysis (DCA).

RESULTS

Age, Dmax, ACR scores ≥11 points, and heterogeneous enhancement were four independent predictors of HVLNM after univariate and multivariate analysis in training set. These predictors were used to construct the corresponding nomograms with AUC of 0.860(95% CI: 0.792-0.928). Calibration curves and DCA plots revealed their robust calibration performances and fine net benefits. The accuracy and Kappa value obtained through ten-fold cross-validation were 0.864 and 0.468. The ROC value of the external validation was 0.885(95% CI:0.792-0.978).

CONCLUSION

Our visualization nomogram provides clinicians with useful information in a simple and cost-effective manner, aiding in the formulation of personalized treatment plans and the reduction of reoperation rates.

摘要

背景

鉴于临床实践中术前诊断高容量淋巴结转移(HVLNM)存在挑战,我们构建并外部验证了一个综合预测模型,该模型整合了传统超声特征、超声造影(CEUS)参数、BRAF突变以及临床淋巴结阴性(cN0)的乳头状甲状腺癌(PTC)中HVLNM的临床病理数据。

方法

本回顾性研究纳入了2022年12月至2024年12月期间接受甲状腺次全切除术或全切除术并伴有预防性颈淋巴结清扫术的126例临床淋巴结阴性(cN0)的PTC患者,另外47例cN0 PTC患者纳入外部验证队列。进行单因素和多因素分析以确定HVLNM的独立危险因素,并构建二元逻辑回归方程和相关列线图以预测HVLNM的风险。该模型采用十折交叉验证进行内部验证,并在独立的外部队列中进一步进行外部验证。通过曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)评估列线图模型的临床实用性。

结果

在训练集中,单因素和多因素分析后,年龄、最大直径(Dmax)、ACR评分≥11分以及不均匀增强是HVLNM的四个独立预测因素。这些预测因素用于构建相应的列线图,AUC为0.860(95%CI:0.792-0.928)。校准曲线和DCA图显示了它们强大的校准性能和良好的净效益。通过十折交叉验证获得的准确率和Kappa值分别为0.864和0.468。外部验证的ROC值为0.885(95%CI:0.792-0.978)。

结论

我们的可视化列线图以简单且经济有效的方式为临床医生提供有用信息,有助于制定个性化治疗方案并降低再次手术率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee51/12408322/f250ee001a18/fendo-16-1613672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验