Suppr超能文献

机械可调生物制造通道可实现模拟动脉搏动和动态组织驱动。

Mechanically Tunable Biofabricated Channels Enable Mimicking Arterial Pulsatility and Dynamic Tissue Actuation.

作者信息

Bosmans Cécile, Becker Malin, Moreira Teixeira Liliana S, Leijten Jeroen

机构信息

Leijten Lab Department of BioEngineering TechMed Centre Faculty of Science and Technology University of Twente Enschede 7522 NB Netherlands.

Department of Advanced Organ bioengineering and Therapeutics, TechMed Centre, Faculty of Science and Technology University of Twente Enschede 7522 NB Netherlands.

出版信息

Small Sci. 2025 Jun 30;5(9):2500176. doi: 10.1002/smsc.202500176. eCollection 2025 Sep.

Abstract

Dynamic alteration of blood vessel geometry is an inherent feature of the circulatory system. However, while the engineering of multiscale, branched, and interconnected blood vessels has been well explored, mimicking the dynamic behavior (e.g., pulsatile blood flow) of native arterial vessels has remained understudied. This is surprising because the natural pulsatile flow and subsequent dynamic deformation of arteries provide physiologically relevant mechanical actuation to proximal cells and tissues, contributing to both tissue homeostasis and disease progression. Yet, many tissue engineering efforts and Organ-on-Chip developments have focused on replicating vessel structure, while overlooking the native mechanical dynamicity that governs arterial tissue function. Here, the development of an on-demand tunable elastic hydrogel is reported, composed of tyramine-conjugated alginate, offering controlled, reversible dilation under physiologically relevant flow. Exploring casted and 3D bioprinted channels, how vessel dilation influences shear stresses in relation to vessel compliance is investigated. This approach is demonstrated to allow for hydrodynamic mechanodeformation and stimulation of engineered tissues. Moreover, it is revealed that pulsatile flow deformation alters compound penetration rates (e.g., nutrients and pharmaceuticals) into surrounding tissues. Finally, the spatially controlled stiffening of engineered blood vessels is demonstrated to locally limit the dilation, modeling blood vessel diseases such as stenosis or aneurysm.

摘要

血管几何形状的动态变化是循环系统的固有特征。然而,尽管对多尺度、分支状和相互连接的血管工程进行了充分探索,但对天然动脉血管动态行为(如脉动血流)的模拟仍未得到充分研究。这令人惊讶,因为动脉的自然脉动血流及随后的动态变形为近端细胞和组织提供了生理相关的机械刺激,对组织稳态和疾病进展都有影响。然而,许多组织工程努力和芯片器官开发都集中在复制血管结构上,而忽略了控制动脉组织功能的天然机械动态性。在此,报道了一种按需可调弹性水凝胶的开发,它由酪胺共轭藻酸盐组成,在生理相关流动下可实现可控、可逆的扩张。通过探索浇铸和3D生物打印通道,研究了血管扩张如何影响与血管顺应性相关的剪切应力。这种方法被证明可以实现流体动力机械变形并刺激工程组织。此外,研究表明脉动流变形会改变化合物(如营养物质和药物)进入周围组织的渗透率。最后,证明了工程血管的空间控制硬化可局部限制扩张,模拟诸如狭窄或动脉瘤等血管疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad30/12412620/05124e6f94da/SMSC-5-2500176-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验