Almuhaimeed Abdullah, Bilal Anas, Alzahrani Abdulkareem, Alrashidi Malek, Alghamdi Mansoor, Sarwar Raheem
Digital Health Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
College of Information Science and Technology, Hainan Normal University, Haikou, China.
Front Med (Lausanne). 2025 Aug 22;12:1635796. doi: 10.3389/fmed.2025.1635796. eCollection 2025.
Brain tumor classification remains one of the most challenging tasks in medical image analysis, with diagnostic errors potentially leading to severe consequences. Existing methods often fail to fully exploit all relevant features, focusing on a limited set of deep features that may miss the complexity of the task.
In this paper, we propose a novel deep learning model combining a Swin Transformer and AE-cGAN augmentation to overcome challenges such as data imbalance and feature extraction. AE-cGAN generates synthetic images, enhancing dataset diversity and improving the model's generalization. The Swin Transformer excels at capturing both local and global dependencies, while AE-cGAN generates synthetic data that enables classification of multiple brain tumor morphologies.
The model achieved impressive accuracy rates of 99.54% and 98.9% on two publicly available datasets, Figshare and Kaggle, outperforming state-of-the-art methods. Our results demonstrate significant improvements in classification, sensitivity, and specificity.
These findings indicate that the proposed approach effectively addresses data imbalance and feature extraction limitations, leading to superior performance in brain tumor classification. Future work will focus on real-time clinical deployment and expanding the model's application to various medical imaging tasks.
脑肿瘤分类仍然是医学图像分析中最具挑战性的任务之一,诊断错误可能会导致严重后果。现有方法往往无法充分利用所有相关特征,而是专注于一组有限的深度特征,这可能会忽略任务的复杂性。
在本文中,我们提出了一种新颖的深度学习模型,该模型结合了Swin Transformer和AE-cGAN增强技术,以克服数据不平衡和特征提取等挑战。AE-cGAN生成合成图像,增强数据集的多样性并提高模型的泛化能力。Swin Transformer擅长捕捉局部和全局依赖性,而AE-cGAN生成的合成数据能够对多种脑肿瘤形态进行分类。
该模型在两个公开可用的数据集Figshare和Kaggle上分别达到了令人印象深刻的99.54%和98.9%的准确率,优于现有最先进的方法。我们的结果表明在分类、敏感性和特异性方面有显著提高。
这些发现表明,所提出的方法有效地解决了数据不平衡和特征提取的局限性,在脑肿瘤分类中表现出卓越的性能。未来的工作将集中在实时临床部署,并将模型的应用扩展到各种医学成像任务。