Suppr超能文献

一种结合注意力网络和迁移学习的单细胞肿瘤药物反应预测方法。

A drug response prediction method for single-cell tumors combining attention networks and transfer learning.

作者信息

Zhou BingWei, Sun SiLin, Liu ShengZheng, Long HaiXia, Li YuChun

机构信息

College of Information Science and Technology, Hainan Normal University, Guilinyang Campus, Haikou, Hainan, China.

Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, China.

出版信息

Front Med (Lausanne). 2025 Aug 21;12:1631898. doi: 10.3389/fmed.2025.1631898. eCollection 2025.

Abstract

INTRODUCTION

Accurately predicting tumor cell line responses to therapeutic drugs is essential for personalized cancer treatment. Current methods using bulk cell data fail to fully capture tumor heterogeneity and the complex mechanisms underlying treatment responses.

METHODS

This study introduces a novel method, ATSDP-NET (Attention-based Transfer Learning for Enhanced Single-cell Drug Response Prediction), which combines bulk and single-cell data. The model utilizes transfer learning and attention networks to predict drug responses in single-cell tumor data, after pre-training on bulk cell gene expression data. A multi-head attention mechanism is incorporated to enhance the model's expressive power and prediction accuracy by identifying gene expression patterns linked to drug reactions.

RESULTS

ATSDP-NET outperforms existing methods in drug response prediction, as demonstrated on four single-cell RNA sequencing datasets. The model showed superior performance across multiple metrics, including recall, ROC, and average precision (AP). It accurately predicted the sensitivity and resistance of mouse acute myeloid leukemia cells to I-BET-762 and the sensitivity and resistance of human oral squamous cell carcinoma cells to cisplatin. Correlation analysis revealed a high correlation between predicted sensitivity gene scores and actual values (R = 0.888, < 0.001), while resistance gene scores also showed a significant correlation (R = 0.788, < 0.001). The dynamic process of cells transitioning from sensitive to resistant states was visualized using uniform manifold approximation and projection (UMAP).

DISCUSSION

ATSDP-NET identifies critical genes linked to drug responses, confirming its predictions through differential gene expression scores and gene expression patterns. This method provides valuable insights into the mechanisms of drug resistance and offers potential for developing personalized treatment strategies.

摘要

引言

准确预测肿瘤细胞系对治疗药物的反应对于个性化癌症治疗至关重要。目前使用批量细胞数据的方法无法充分捕捉肿瘤异质性以及治疗反应背后的复杂机制。

方法

本研究引入了一种新方法,即ATSDP-NET(基于注意力的迁移学习用于增强单细胞药物反应预测),它结合了批量和单细胞数据。该模型在批量细胞基因表达数据上进行预训练后,利用迁移学习和注意力网络来预测单细胞肿瘤数据中的药物反应。引入了多头注意力机制,通过识别与药物反应相关的基因表达模式来增强模型的表达能力和预测准确性。

结果

在四个单细胞RNA测序数据集上的验证表明,ATSDP-NET在药物反应预测方面优于现有方法。该模型在多个指标上表现出色,包括召回率、ROC和平均精度(AP)。它准确预测了小鼠急性髓系白血病细胞对I-BET-762的敏感性和抗性,以及人口腔鳞状细胞癌细胞对顺铂的敏感性和抗性。相关性分析显示,预测的敏感性基因分数与实际值之间存在高度相关性(R = 0.888,<0.001),抗性基因分数也显示出显著相关性(R = 0.788,<0.001)。使用均匀流形近似和投影(UMAP)可视化了细胞从敏感状态转变为抗性状态的动态过程。

讨论

ATSDP-NET识别出与药物反应相关的关键基因,并通过差异基因表达分数和基因表达模式证实了其预测。该方法为耐药机制提供了有价值的见解,并为制定个性化治疗策略提供了潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e58/12408664/cc37f2414a7e/fmed-12-1631898-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验