Suppr超能文献

基于随机森林的急性呼吸道感染预测指标选择及肺炎风险概率评估:2023 - 2024年中国重庆的一项横断面研究

Random forest-based predictor selection and pneumonia risk probability assessment in acute respiratory infections: A cross-sectional study in Chongqing, China, 2023-2024.

作者信息

Xu Yunshao, Duan Yuping, Yang Jule, Jiang Mingyue, Sun Yanxia, Cao Yanlin, Qi Li, Wu Zeni, Feng Luzhao

机构信息

Public Health Emergency Management Innovation Center, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing 100005, China.

Infectious Disease Control and Prevention, Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400700, China.

出版信息

Biosaf Health. 2025 Jul 11;7(4):238-244. doi: 10.1016/j.bsheal.2025.07.004. eCollection 2025 Aug.

Abstract

Progression of acute respiratory infection (ARI) to pneumonia increases severity and healthcare burden. Limited evidence exists on using machine learning to identify predictors from demographics, clinical, and pathogen detection data. This study aimed to identify pneumonia predictors in ARI patients using machine learning methods. This observational study was conducted in Chongqing, China, from September 2023 to April 2024. Outpatients and inpatients with ARI were recruited weekly. A random forest algorithm was used for predictor selection, followed by a logistic regression-based nomogram to analyze the probability of pneumonia. Among the 1,638 patients with ARI, those with pneumonia had higher rates of influenza A virus (IFV-A) (49.2 % vs. 39.6 %), influenza B virus (26.3 % vs. 18.6 %), and respiratory syncytial virus (6.1 % vs. 1.9 %) infection than those without pneumonia. In the subgroup of 79 patients with comprehensive blood tests, pneumonia was positively associated with hemoglobin (130.00 g/L vs. 124.00 g/L), blood urea nitrogen (5.73 mmol/L vs. 4.85 mmol/L), C-reactive protein (36.10 mg/L vs. 25.25 mg/L), procalcitonin (0.11 μg/L vs. 0.07 μg/L), and D-dimer (0.95  μg/L vs. 0.80 μg/L) levels, whereas pneumonia was inversely associated with neutrophils (4.20 × 10/L vs. 4.76 × 10/L), aspartate aminotransferase (22.50 U/L vs. 24.00 U/L), and uric acid (280.90 μmol/L vs. 330.00 μmol/L) levels. Elevated D-dimer levels (adjusted odds ratio [aOR] = 1.002, 95 % confidence interval [CI]: 1.001-1.004) and IFV-A infection (aOR = 9.308, 95 % CI: 2.433-35.606) were significantly associated with increased pneumonia probability. In future clinical practice, particular attention should be given to ARI patients with elevated D-dimer levels and IFV-A infections.

摘要

急性呼吸道感染(ARI)进展为肺炎会增加疾病严重程度和医疗负担。关于利用机器学习从人口统计学、临床和病原体检测数据中识别预测因素的证据有限。本研究旨在使用机器学习方法识别ARI患者中的肺炎预测因素。这项观察性研究于2023年9月至2024年4月在中国重庆进行。每周招募ARI门诊患者和住院患者。使用随机森林算法进行预测因素选择,随后使用基于逻辑回归的列线图分析肺炎发生概率。在1638例ARI患者中,肺炎患者的甲型流感病毒(IFV-A)感染率(49.2%对39.6%)、乙型流感病毒感染率(26.3%对18.6%)和呼吸道合胞病毒感染率(6.1%对1.9%)高于无肺炎患者。在79例进行了全面血液检查的患者亚组中,肺炎与血红蛋白水平(130.00 g/L对124.00 g/L)、血尿素氮水平(5.73 mmol/L对4.85 mmol/L)、C反应蛋白水平(36.10 mg/L对25.25 mg/L)、降钙素原水平(0.11 μg/L对0.07 μg/L)和D-二聚体水平(0.95 μg/L对0.80 μg/L)呈正相关,而肺炎与中性粒细胞水平(4.20×10/L对4.76×10/L)、天冬氨酸转氨酶水平(22.50 U/L对24.00 U/L)和尿酸水平(280.90 μmol/L对330.00 μmol/L)呈负相关。D-二聚体水平升高(调整后的优势比[aOR]=1.002,95%置信区间[CI]:1.001 - 1.004)和IFV-A感染(aOR = 9.308,95% CI:2.433 - 35.606)与肺炎发生概率增加显著相关。在未来的临床实践中,应特别关注D-二聚体水平升高和IFV-A感染的ARI患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dc4/12412401/6256e7640a7b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验