Suppr超能文献

从患者咨询到图表:利用大语言模型构建患者就医知识图谱

From Patient Consultations to Graphs: Leveraging LLMs for Patient Journey Knowledge Graph Construction.

作者信息

Al Khatib Hassan S, Mittal Sudip, Rahimi Shahram, Marhamati Nina, Bozorgzad Sean

机构信息

Mississippi State University, Starkville, MS, USA.

University of Alabama, Tuscaloosa, AL, USA.

出版信息

IEEE Conf Artif Intell. 2025 May;2025:410-415. doi: 10.1109/cai64502.2025.00075. Epub 2025 Jul 7.

Abstract

The shift toward patient-centric healthcare requires understanding comprehensive patient journeys. Current healthcare data systems often fail to provide holistic representations, hindering coordinated care. Patient Journey Knowledge Graphs (PJKGs) solve this by integrating diverse patient information into unified, structured formats. This paper presents a methodology for constructing PJKGs using Large Language Models (LLMs) to process both clinical documentation and patient-provider conversations. These graphs capture temporal and causal relationships between clinical events, enabling advanced reasoning and personalized insights. Our evaluation of four LLMs (Claude 3.5, Mistral, Llama 3.1, ChatGPT4o) shows all achieved perfect structural compliance but varied in medical entity processing, computational efficiency, and semantic accuracy. This work advances patient-centric healthcare through actionable knowledge graphs (KGs) that enhance care coordination and outcome prediction.

摘要

向以患者为中心的医疗保健转变需要了解全面的患者就医过程。当前的医疗数据系统往往无法提供整体呈现,阻碍了协调护理。患者就医过程知识图谱(PJKGs)通过将各种患者信息整合为统一的结构化格式来解决这一问题。本文提出了一种使用大语言模型(LLMs)构建PJKGs的方法,以处理临床文档和患者与提供者之间的对话。这些图谱捕捉临床事件之间的时间和因果关系,实现高级推理和个性化见解。我们对四个大语言模型(Claude 3.5、Mistral、Llama 3.1、ChatGPT4o)的评估表明,所有模型都实现了完美的结构合规,但在医学实体处理、计算效率和语义准确性方面存在差异。这项工作通过可操作的知识图谱(KGs)推动以患者为中心的医疗保健,增强护理协调和结果预测。

相似文献

本文引用的文献

3
Multimodal learning on graphs for disease relation extraction.基于图的多模态学习在疾病关系抽取中的应用。
J Biomed Inform. 2023 Jul;143:104415. doi: 10.1016/j.jbi.2023.104415. Epub 2023 Jun 3.
6
Health Informatics: Engaging Modern Healthcare Units: A Brief Overview.健康信息学:现代医疗单位的参与:简要概述。
Front Public Health. 2022 Apr 29;10:854688. doi: 10.3389/fpubh.2022.854688. eCollection 2022.
8
Disease Prediction via Graph Neural Networks.基于图神经网络的疾病预测。
IEEE J Biomed Health Inform. 2021 Mar;25(3):818-826. doi: 10.1109/JBHI.2020.3004143. Epub 2021 Mar 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验