Al Khatib Hassan S, Mittal Sudip, Rahimi Shahram, Marhamati Nina, Bozorgzad Sean
Mississippi State University, Starkville, MS, USA.
University of Alabama, Tuscaloosa, AL, USA.
IEEE Conf Artif Intell. 2025 May;2025:410-415. doi: 10.1109/cai64502.2025.00075. Epub 2025 Jul 7.
The shift toward patient-centric healthcare requires understanding comprehensive patient journeys. Current healthcare data systems often fail to provide holistic representations, hindering coordinated care. Patient Journey Knowledge Graphs (PJKGs) solve this by integrating diverse patient information into unified, structured formats. This paper presents a methodology for constructing PJKGs using Large Language Models (LLMs) to process both clinical documentation and patient-provider conversations. These graphs capture temporal and causal relationships between clinical events, enabling advanced reasoning and personalized insights. Our evaluation of four LLMs (Claude 3.5, Mistral, Llama 3.1, ChatGPT4o) shows all achieved perfect structural compliance but varied in medical entity processing, computational efficiency, and semantic accuracy. This work advances patient-centric healthcare through actionable knowledge graphs (KGs) that enhance care coordination and outcome prediction.
向以患者为中心的医疗保健转变需要了解全面的患者就医过程。当前的医疗数据系统往往无法提供整体呈现,阻碍了协调护理。患者就医过程知识图谱(PJKGs)通过将各种患者信息整合为统一的结构化格式来解决这一问题。本文提出了一种使用大语言模型(LLMs)构建PJKGs的方法,以处理临床文档和患者与提供者之间的对话。这些图谱捕捉临床事件之间的时间和因果关系,实现高级推理和个性化见解。我们对四个大语言模型(Claude 3.5、Mistral、Llama 3.1、ChatGPT4o)的评估表明,所有模型都实现了完美的结构合规,但在医学实体处理、计算效率和语义准确性方面存在差异。这项工作通过可操作的知识图谱(KGs)推动以患者为中心的医疗保健,增强护理协调和结果预测。