Ferguson John B, Kanel Sushil R, Jones John G, Shenogin Sergei V, Sihn Sangwook, Mahalingam Krishnamurthy, Wheeler Robert A, Bowers Cynthia T, Islam Md Sherajul, Roy Ajit K
Materials and Manufacturing Directorate, AFRL/RXEE, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States.
Universal Energy Systems, a BlueHalo Company, 4401 Dayton-Xenia Rd, Dayton, Ohio 45432, United States.
ACS Omega. 2025 Aug 20;10(34):39283-39291. doi: 10.1021/acsomega.5c06959. eCollection 2025 Sep 2.
This study addresses a critical limitation in direct bonded copper (DBC) materials used in power electronics by introducing a copper-zirconium (Cu/Zr) alloy interposing layer at the copper-ceramic interface. This novel design aims to mitigate mechanical stress induced by mismatched material properties, such as the coefficient of thermal expansion (CTE) and elastic modulus, during thermal cycling. The key findings of this study are (1) thermal fatigue improvement: Test samples with the Cu/Zr interface layer (Cu-Cu/Zr-AlN) three times enhanced thermal fatigue resistance, surviving 30 thermal cycles from -55 to 300 °C before delamination, while standard DBC substrates without the Cu/Zr layer failed after just 10 cycles, indicating a performance improvement with the Cu/Zr alloy, (2) durability projections: Based on the Coffin-Manson model, if the upper temperature is capped at 150 °C, the Cu-Cu/Zr-AlN substrates are projected to survive approximately 1372 cycles, underscoring their potential for long-term reliability, and (3) stress mitigation: The Cu/Zr alloy layer bridges the CTE disparity between copper and ceramic, reducing mechanical stress and improving structural integrity across a broad temperature range (-55 to 300 °C). This study reveals, incorporating the Cu/Zr interposing layer between Cu and AlN substrates significantly enhances the operational lifespan and reliability, making them well-suited for high-temperature and high-stress environments in advanced power electronics. This innovation demonstrates the feasibility of improving thermal fatigue performance while maintaining mechanical integrity, representing a substantial advancement over conventional DBC materials.
本研究通过在铜 - 陶瓷界面引入铜 - 锆(Cu/Zr)合金中间层,解决了功率电子学中使用的直接键合铜(DBC)材料的一个关键限制。这种新颖的设计旨在减轻热循环过程中由材料性能不匹配(如热膨胀系数(CTE)和弹性模量)引起的机械应力。本研究的主要发现如下:(1)热疲劳性能提升:具有Cu/Zr界面层(Cu - Cu/Zr - AlN)的测试样品的抗热疲劳能力提高了三倍,在从 -55至300°C的30次热循环后才分层,而没有Cu/Zr层的标准DBC基板在仅10次循环后就失效了,这表明Cu/Zr合金的性能有所提升;(2)耐久性预测:基于科芬 - 曼森模型,如果上限温度限制在150°C,Cu - Cu/Zr - AlN基板预计可存活约1372次循环,突出了它们长期可靠性的潜力;(3)应力减轻:Cu/Zr合金层弥合了铜和陶瓷之间的CTE差异,在较宽温度范围(-55至300°C)内降低了机械应力并提高了结构完整性。本研究表明,在Cu和AlN基板之间加入Cu/Zr中间层可显著提高使用寿命和可靠性,使其非常适合先进功率电子学中的高温和高应力环境。这一创新证明了在保持机械完整性的同时提高热疲劳性能的可行性,代表了相对于传统DBC材料的重大进步。