Matos Robert S, da Fonseca Filho Henrique D, Monteiro Michael D S, Ferreira Nilson S
Amazonian Materials Group, Federal University of Amapá, Macapá 68903-419, AP, Brazil.
Laboratory for Development and Applications of Amazon Nanomaterials (LADENA), Department of Materials Physics, Federal University of Amazonas, Manaus 69067-005, AM, Brazil.
ACS Omega. 2025 Aug 18;10(34):39081-39086. doi: 10.1021/acsomega.5c05440. eCollection 2025 Sep 2.
Hybrid coatings composed of crystalline monetite (CaHPO) and kefir-derived Dextran were synthesized on Ti6Al4V substrates using a low-temperature sol-gel-assisted route (≤80 °C), enabling biopolymer integration without thermal degradation. X-ray diffraction (XRD) confirmed the formation of triclinic monetite nanocrystals (∼152 nm), while Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) analyses verified the uniform incorporation of Dextran, particularly in the 4 wt % formulation, which yielded compact, homogeneous surfaces. Electrochemical evaluations in Fusayama artificial saliva revealed a substantial enhancement in corrosion resistance, with the open-circuit potential shifting from -0.272 V (uncoated) to -0.034 V and polarization resistance increasing from 1987.6 to 5573.4 Ω. This performance surpasses several benchmark coatings reported for biomedical alloys, highlighting the synergistic interaction between the inorganic phase and the biopolymeric matrix. The hybrid architecture promotes defect sealing, barrier formation, and interface stabilization. These results position the monetite/Dextran system as a scalable, sustainable, and biocompatible solution for next-generation implant coatings, offering a mild-temperature alternative to traditional ceramic deposition methods.
采用低温溶胶 - 凝胶辅助路线(≤80°C)在Ti6Al4V基底上合成了由结晶性磷酸氢钙(CaHPO)和源自开菲尔的葡聚糖组成的混合涂层,实现了生物聚合物的整合且无热降解。X射线衍射(XRD)证实了三斜晶系磷酸氢钙纳米晶体(约152nm)的形成,而傅里叶变换红外光谱(FTIR)和扫描电子显微镜/能量色散X射线光谱(SEM/EDS)分析验证了葡聚糖的均匀掺入,特别是在4wt%配方中,该配方产生了致密、均匀的表面。在扶桑人工唾液中的电化学评估显示耐腐蚀性显著增强,开路电位从-0.272V(未涂层)变为-0.034V,极化电阻从1987.6增加到5573.4Ω。这种性能超过了报道的几种生物医学合金基准涂层,突出了无机相和生物聚合物基体之间的协同相互作用。混合结构促进了缺陷密封、屏障形成和界面稳定。这些结果将磷酸氢钙/葡聚糖体系定位为下一代植入物涂层的可扩展、可持续且生物相容的解决方案,为传统陶瓷沉积方法提供了一种温和温度的替代方案。